

Welcome to Divmod’s documentation!

Products

These are things that Divmod produced.

	Divmod Axiom
	Performance

	Download

	See Also

	Index

	Divmod Combinator
	Rationale

	Download

	Use

	chbranch

	mkbranch

	unbranch

	Divmod Epsilon
	Download

	See Also

	Divmod Mantissa
	Download

	Tutorials

	See Also

	Index

	Divmod Nevow
	Download

	Features

	Documentation

	Examples

	Help / Support

	Related Projects

	Index of Nevow documents

	Divmod Athena
	History

	Development Environment

	Simple LiveElement demo

	Testing

	Implementation

	Tickets

	Divmod PyFlakes
	Download

	Exits

	Divmod Sine
	Download

	See also

	Divmod Vertex
	Exits

	Status

	Download

	Imaginary

Retired Projects

This is the rest home for Divmod projects that didn’t quite make it up the
evolutionary ladder. These projects are not being developed or maintained.

	Lupy

	Pyndex

	‘Old’ Quotient

	Divmod Xapwrap

Philosophy

Many writings of various Divmod members are archived here.

	Potato Programming

Biographies

Some background information on the people behind Divmod.

	Glyph Lefkowitz

	Jean-Paul

	Moe Aboulkheir

	Duncan McGreggor (oubiwann)
	Brief Bio

	Sites

	Projects

	Wiki Notes

	Draft Pages

Miscellaneous

Random pages that might not really be needed anymore but shouldn’t be
discarded.

	Python

	Q2Q
	Exits

	SQLite

	The Divmod Fan Club
	Joining Up

	Huh What?!

	It’s Awesome - Why should I sign up?

	Conscience

	Influence

	Status

	Where does the money go?

Indices and tables

	Index

	Module Index

	Search Page

Divmod Axiom

Axiom is an object database whose primary goal is to provide an
object-oriented layer with what we consider to be the key aspects of OO, i.e.
polymorphism and message dispatch, without hindering the power of an RDBMS.
It is designed to ‘feel Pythonic’, without encouraging the typical ORM
behavior such as Potato Programming.

Axiom provides a full interface to the database, which strongly suggests that
you do not write any SQL of your own. Metaprogramming is difficult and
dangerous (as many, many SQL injection attacks amply demonstrate). Writing
your own SQL is still possible, however, and Axiom does have several methods
which return fragments of generated schema if you wish to use them in your own
queries.

Axiom currently supports only SQLite and does NOT have any features for dealing
with concurrency. We do plan to add some later, and perhaps also support other
databases in the future. Take a look at Concurrency and Scalability for
more information - we’ll update this as the community makes progress on these
issues.

Performance

How does Axiom perform?

Here are some simple third-party benchmarks [http://www.livejournal.com/users/william_os4y/1271.html].

Download

	Stable: Download the latest release - 0.6.0! [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Axiom-0.6.0.tar.gz?format=raw]
(Requires Divmod Epsilon) (Release Notes)

	Trunk: svn co http://divmod.org/svn/Divmod/trunk/Axiom Axiom

See Also

	Axiom Tutorial: Short, sharp Axiom/Mantissa tips and tricks.

	Why use Axiom?: Glyph writes about the advantages of Axiom over other RDBMS and ORM alternatives.

	Reference: A reference to the Axiom public API. (Incomplete but evolving!)

	Development version of the Axiom API docs [http://buildbot.divmod.org/apidocs/axiom.html]

	axiom-examples

	Axiom tickets

	axiomatic

	Transition mini-HOWTO: How to transition from pre-axiom.dependency code.

	Powerups

	WritingUpgradeTests: writing stubloader tests for schema upgrades.

	axiom-files

Index

	Concurrency and Scalability
	Why is the API synchronous?

	Are you sure?

	Is it thread-safe, though?

	But how do you achieve scalability then?

	What if that isn’t good enough?

	Axiom Tutorial

	Why use Axiom?
	Actually Relational

	Actually Object-Oriented

	Extensible

	Active

	Twisted-friendly

	Future-Proof

	Simple

	Safe

	Powerups
	See Also

	Reference
	item.Item(store=store.Store, **kw)

	store.Store([dbdir=None[, debug=False[, parent=None[, idInParent=None]]]])

	Substore

	Powerups

	Upgraders

	Examples : Shop

	Transition mini-HOWTO
	Notes

	Example

	Glossary

	So You Want To Change Your Schema
	Do Stuff

	Dynamic Typing
	Reference to Any

	Schema Migration: Automatic Upgrades

	Transaction Management and Consistency

	Multi-Database

Concurrency and Scalability

Several questions seem to keep coming relating to these issues; this is an
attempt to summarize the discussion around them.

Why is the API synchronous?

Generally database access through the SQLite backend is fast enough that
database operations don’t block long enough to be of concern.

Are you sure?

Sort of. Current usage seems to indicate that it works out just fine, but you
should conduct your own testing to determine whether this model is suitable for
your particular usage patterns.

Is it thread-safe, though?

No. Accessing a Store from different threads will break. Accessing different
Stores, even backed by the same SQLite database, is fine.

But how do you achieve scalability then?

Use multiple databases. For example, Divmod Mantissa has
per-user and per-application stores.

What if that isn’t good enough?

If you do need finer-grained concurrency, then running transactions in separate
threads is one way to go about it. Glyph’s blog has more on this subject [http://www.livejournal.com/users/glyf/2005/09/24/]; also see #537 which
covers the DivmodAxiom implementation of this model.

Axiom Tutorial

JP Calderone’s occasional series on Axiom and Mantissa usage. Via JP’s blog [http://www.livejournal.com/users/jcalderone/].

	How to create a Mantissa Server [http://www.livejournal.com/users/jcalderone/15217.html]

	Configuring HTTP and HTTPS ports, and static content [http://www.livejournal.com/users/jcalderone/15551.html]

	Configuring Static Resources on a Mantissa Server [http://www.livejournal.com/users/jcalderone/15928.html]

	Redirecting HTTP request logs [http://www.livejournal.com/users/jcalderone/16249.html]

	Adding Axiomatic plugins [http://www.livejournal.com/users/jcalderone/16404.html]

	Axiom Queries [http://www.livejournal.com/users/jcalderone/16888.html]

	Axiom Powerups [http://www.livejournal.com/users/jcalderone/17138.html]

Why use Axiom?

Because it’s great, of course! More specifically, it’s an object-relational
database that’s ...

Actually Relational

Axiom imposes an extremely straightforward mapping between tables and
classes: 1 to 1. Your tables get behavior. They can refer to each other. If
you’re familiar with the relational model but are learning OO and want some of
its features, Axiom won’t explode your brain with a million new concepts. After
learning how a few simple Python expressions work, you can get up and running.

Axiom also respects the relational model and allows you to perform queries on
groups of items at once, without loading them first. Support for updates and
deletes without loading items will also be implemented before 1.0 is released.
You don’t need to resort to writing your own ‘for’ loops or your own SQL code in
order to load a joined query. No Potato Programming.

Actually Object-Oriented

Tables have behavior. You can have a reference to an arbitrary item. Items can
exist outside the database. You can mix in code from utility classes to give
your items additional methods, without affecting its schema. Simple database
types like strings and integers can be mapped into complex, rich Python values,
such as email addresses or a fixed-point decimal class.

Extensible

Axiom’s ‘Powerups‘ mechanism allows you enhance a database, or
any row within a database, with additional functionality.

Active

Axiom isn’t a static database. It is dynamic, it contains behaviors.

You can, for example, install a scheduler which will run tasks at specific times
when the database is open.

Twisted-friendly

The aforementioned scheduler is implemented using Twisted’s reactor. Axiom was
explicitly designed for use with events and integrates nicely into a
Twisted-based environment.

Future-Proof

Axiom applications can keep running while they’re being upgraded from one schema
to another (with a partial dataset available). Upgrades are handled
automatically, and the code for upgrading can be kept separate from your
application code. You can even write upgraders which involve complex
relationships between multiple rows.

Simple

Axiom gives you the power of an SQL database without the hassle of generating
code from within code.

Working with Axiom databases is easy. The underlying SQLite engine is pretty
simple to use already, but Axiom doesn’t add layers of complexity that get in
your way. Compare loading a row and manipulating it with a Python class:

from axiom.store import Store
s = Store('store.axiom')
x = s.getItemByID(0)

from pysqlite2 import dbapi2
from mymodule import MyClass
con = dbapi2.connect('store.sqlite')
cur = con.cursor()
cur.execute('select * from my_table where oid = 0')
row = con.fetchall()[0]
x = MyClass(row)

In this case the Axiom example is actually quite a lot shorter!

Safe

Axiom keeps your in-memory objects up to date with what’s happening in the
database, even when transactions have to be rolled back. No need to manage
connections of your own. No more forgetting to commit a transaction, or
forgetting to roll back in an error handler.

Axiom doesn’t expose any SQL to the application developer. Internally Axiom
is also very careful about SQL generation: it doesn’t use string concatenation
except where absolutely necessary, and instead uses ? interpolation. This
means that your site will be completely secure against SQL injection attacks.

Axiom also makes sure that your objects in memory correspond to what’s in the
database. If a transaction fails, Axiom will log the error and revert all the
Python objects involved in the transaction to the state they are in after
reverting. This brings the safety of database transactions into your Python
code.

Powerups

A powerup is a type of Axiom plugin. Zero or more powerups (Axiom items) can be
registered to another axiom item (as long as it is in the same store) and can be
retrieved according to their interface, either by normal adaption of the subject
(in which case the highest priority powerup is returned), or as a group (in
order of priority) by using the axiom.item.Item.powerupsFor method.

See Also

	class axiom.item.Empowered [http://divmod.org/trac/browser/trunk/Axiom/axiom/item.py]

Reference

item.Item(store=store.Store, **kw)

A class describing an object in an Axiom Store. Your subclass of
axiom.item.Item must define the following attributes:

	typeName: A string uniquely identifying this class schema in the store.

	schemaVersion: An integer denoting the schema version. See
Upgraders.

You will also want to define other attributes and these must be special Axiom
class attributes. A selection of standard types are already defined in the
axiom.attributes module.

A simple example:

from axiom import item, attributes

class ShopProduct(item.Item):
 typeName = 'ShopProduct'
 schemaVersion = 1

 name = attributes.text(allowNone=False)
 price = attributes.integer(allowNone=False)
 stock = attributes.integer(default=0)

 def __repr__(self):
 return '<ShopProduct name='%s' price='%d' stock='%d'>' % (self.name, self.price, self.stock)

Limitations

	Axiom Items only support one level of inheritance. You could not for example
write a subclass of the ShopProduct class above. This is by design, and you
are encouraged to explore object composition and adaption instead.

store.Store([dbdir=None[, debug=False[, parent=None[, idInParent=None]]]])

A database in which Axiom Items can be stored. An Axiom Store can be
instantiated with a dbdir parameter, in which case it will be persisted to the
filesystem at the given path. Alternatively, if instantiated without a dbdir
parameter, the store will exist inmemory only for the lifetime of the python
process.

from axiom import store

s = store.Store('/tmp/example.axiom')
s = store.Store() # An inmemory store

If debug=True, the store will print out all SQL commands as they are issued
to the underlying Sqlite database.

Add Items to the Store

p = ShopProduct(store=s, name=u'Tea Bags', price=2)

That’s all there is to it. The returned item can be treated just like any other
python object. Changes made to it are automatically persisted to the store.

>>> p.name
u'Tea Bags'
>>> p.stock
0
>>> p.stock += 20
>>> p.stock
20

If you want to avoid duplicate items you can instead use the findOrCreate method
(see below)

Retrieve Items from the Store

	getItemByID(storeID[, default=_noItem]):

Returns the item with the given ‘storeID’. If no matching item raises KeyError
or ‘default’ if given. Every item in the store has a unique ‘storeID’
attribute.

	findFirst'''(userItemClass[, **attrs]):

Returns the first item of class ‘userItemClass’ or None. The query can be
further narrowed by specifying ‘attrs’, eg

>>> s.findFirst(ShopProduct, name=u'Tea Bags')
<ShopProduct name='Tea Bags' price='2' stock='20'>

	findOrCreate(userItemClass[, **attrs]):

Returns the first item of class ‘userItemClass’ or creates it if it doesn’t
already exist. eg.

>>> s.findOrCreate(ShopProduct, name=u'Pot Noodle')
TypeError: attribute `= integer() <ShopProduct.price>`_ must not be None

but we must give all attributes required to create the new item

>>> s.findOrCreate(ShopProduct, name=u'Pot Noodle', price=3)
<ShopProduct name='Pot Noodle' price='3' stock='0'>

	query(tableClass[, comparison=None[, limit=None[, offset=None[, sort=None[,
justCount=False[, sumAttribute=None]]]]]]):

Return generator of items matching class ‘tableClass’ and ‘comparison’.
Limited to length ‘limit’ beyond ‘offset’. Sorted by attribute ‘sort’.
Examples:

>>> 'All products'
>>> [x.name for x in s.query(ShopProduct)]
[u'Tea Bags', u'Pot Noodle']
>>> 'Products in stock'
>>> [x.name for x in s.query(ShopProduct, ShopProduct.stock > 0)]
[u'Tea Bags']
>>> 'Products in stock AND which cost less than 5'
>>> from axiom.attributes import AND, OR
>>> [x.name for x in s.query(ShopProduct, AND(ShopProduct.stock > 0, ShopProduct.price < 5))]
[u'Tea Bags']

You get the idea. Try turning on store debugging and you will get an idea of
what is going on behind the scenes.

>>> s.debug = True
>>> [x.name for x in s.query(ShopProduct, sort=ShopProduct.stock.ascending)]
** SELECT item_ShopProduct_v1 .oid, item_ShopProduct_v1 .* FROM item_ShopProduct_v1 ORDER BY item_ShopProduct_v1.`ASC --
********** COMMIT **********
 lastrow: None
 result: [(4, u'Pot Noodle', 3, 0), (3, u'Tea Bags', 2, 20) <stock]>`_
[u'Pot Noodle', u'Tea Bags']

Axiom is also capable of constructing more complex queries involving table
joins behind the scenes. For more complete examples see axiom-examples.

Substore

A Store that also exists as an Item in a parent Store.

	class axiom.substore.SubStore

Powerups

A powerup is a type of Axiom plugin. Zero or more powerups (Axiom items) can be
registered to another axiom item (as long as it is in the same store) and can be
retrieved according to their interface, either by normal adaption of the subject
(in which case the highest priority powerup is returned), or as a group (in
order of priority) by using the axiom.item.Item.powerupsFor method.

	class axiom.item.Empowered

Upgraders

?

Examples : Shop

from zope.interface import Interface, implements

from axiom.attributes import AND, OR
from axiom import item, attributes, sequence
from epsilon.extime import Time

class Person(item.Item):
 '''A person here is not specific to the shopping part of the application.
 It may have been defined elsewhere eg during registration for an enquiries system.
 We can't subclass Person but we can plugin our shop specific attributes and methods using
 the Axiom powerup pattern.
 '''

 typeName = 'Person'
 schemaVersion = 1

 name = attributes.text(allowNone=False)
 dob = attributes.timestamp(allowNone=False)

 def __repr__(self):
 return '<Person name='%s' dob='%s'>' % (self.name, self.dob.asISO8601TimeAndDate())

class IShopCustomer(Interface):
 pass

class ShopCustomer(item.Item):
 '''A ShopCustomer is a powerup for person.'''
 implements(IShopCustomer)

 typeName = 'ShopCustomer'
 schemaVersion = 1

 installedOn = attributes.reference()

 def installOn(self, other):
 assert self.installedOn is None, 'cannot install ShopCustomer on more than one person'
 self.installedOn = other
 other.powerUp(self, IShopCustomer)

 '''Customer specific methods'''
 def getProductsOrdered(self):
 # An example of an inner join query
 return self.store.query(
 ShopProduct,
 AND(
 ShopOrder.customer == self.installedOn,
 ShopProductOrdered.order==ShopOrder.storeID,
 ShopProductOrdered.product==ShopProduct.storeID
)
)

 def getOrders(self):
 return self.store.query(
 ShopOrder,
 ShopOrder.customer == self.installedOn
)

class ShopProduct(item.Item):
 typeName = 'ShopProduct'
 schemaVersion = 1

 name = attributes.text(allowNone=False)
 price = attributes.integer(allowNone=False)
 stock = attributes.integer(default=0)

 def __repr__(self):
 return '<ShopProduct name='%s' price='%d' stock='%d'>' % (self.name, self.price, self.stock)

class ShopProductOrdered(item.Item):
 '''Links a product and quantity of product to an order.'''
 typeName = 'ShopProductOrdered'
 schemaVersion = 1

 order = attributes.reference(allowNone=False)
 product = attributes.reference(allowNone=False)
 quantity = attributes.integer(default=1)

class ShopOrder(item.Item):
 typeName = 'ShopOrder'
 schemaVersion = 1

 customer = attributes.reference(allowNone=False)
 purchaseDate = attributes.timestamp(allowNone=False)

 def __init__(self, **kw):
 IShopCustomer(kw['customer'])
 super(ShopOrder, self).__init__(**kw)

 def addProduct(self, product, quantity=1):
 po = self.store.findOrCreate(
 ShopProductOrdered,
 order=self,
 product=product)
 po.quantity = quantity

 def getProducts(self):
 return self.store.query(ShopProductOrdered, ShopProductOrdered.order == self)

 def getTotalPrice(self):
 #XXX: Axiom will issue multiple queries here, but it could be done in one SQL query. Is there a way to issue such a query?
 total = 0
 for p in self.getProducts():
 total += p.product.price*p.quantity
 return total

 def __repr__(self):
 return '<ShopOrder customer='%s' purchaseDate='%s' items='%s'>' % (self.customer.name, self.purchaseDate.asISO8601TimeAndDate(), self.items)

def populateStore(s):

 customerDetails = [
 (u'Joe Bloggs', '1977-05-08'),
 (u'Jane Doe', '1959-05-22'),
]

 for name, dob in customerDetails:
 p = Person(store=s, name=name, dob=Time.fromISO8601TimeAndDate(dob))

 # This is where we powerup the Person with additional ShopCustomer bits
 ShopCustomer(store=s).installOn(p)

 products = [
 ShopProduct(store=s, name=u'Tea Bags', price=2),
 ShopProduct(store=s, name=u'Cornflakes', price=3),
 ShopProduct(store=s, name=u'Lemonade', price=4),
 ShopProduct(store=s, name=u'Peanuts', price=5),
]

 quantities = [1,2,4]

 for c in s.query(ShopCustomer):
 o = ShopOrder(store=s, customer=c.installedOn, purchaseDate=Time())
 o.addProduct(random.choice(products), random.choice(quantities))
 o.addProduct(random.choice(products), random.choice(quantities))

if __name__ == '__main__':
 import random
 from axiom import store

 s = store.Store(debug=False)
 populateStore(s)

 '''We only want a Person who is also a ShopCustomer.
 We therefore search for ShopCustomer but grab a reference to the person within (installedOn)
 When you want the person reference to behave like a shopcustomer
 adapt it to the IShopCustomer interface'''
 p = s.findFirst(ShopCustomer).installedOn

 print [x.name for x in IShopCustomer(p).getProductsOrdered()]
 print '%s has ordered the following products since registering:' % p.name

 print 'A breakdown of %s's orders' % p.name
 print ['Items: %s, Total: %d'%(['%s X %d'%(y.product.name, y.quantity) for y in x.getProducts()], x.getTotalPrice()) for x in IShopCustomer(p).getOrders()]

Transition mini-HOWTO

Notes

A few bullet points with stuff to do transitioning from pre-dependency code to the new API(s).

	axiom.item.InstallableMixin has been removed since it is unnecessary, as
is the installedOn attribute that was on subclasses thereof.
powerup.installedOn() is now spelled
axiom.dependency.installedOn(powerup).

	powerup.installOn(target) is now spelled
axiom.dependency.installOn(powerup, target). See also
axiom.dependency.uninstallFrom(powerup, target).

	Instead of explicitly powering the target up in installOn, set the
powerupInterfaces class attribute to a sequence of interfaces, or of
(interface, priority) tuples.

	If you are implementing INavigableElement, you need something like:

privateApplication = dependsOn(PrivateApplication)

	Declare other dependencies of your powerups as appropriate.

	Get rid of your Benefactor / BenefactorFactory classes, and instead
pass an installablePowerups sequence when constructing your offering. For
example:

installablePowerups = [
 (u'Operator admin', u'Operator administration', OperatorAdmin),
 (u'Reports', u'Data reporting functionality', Reports),
]

	TODO: writing upgraders

Example

xmantissa.webapp was migrated as part of this change [http://divmod.org/trac/changeset/10877#file115]. That serves as a good
example, and will be (incompletely) presented below as a demonstration. The
examples below elide most of the code and focus just on the changes. Please
refer to the different file versions themselves for a complete representation.

Before (reference [http://divmod.org/trac/browser/trunk/Mantissa/xmantissa/webapp.py?rev=10508#L432]):

class PrivateApplication(Item, PrefixURLMixin):
 ...
 implements(ISiteRootPlugin, IWebTranslator)
 ...
 installedOn = reference()
 ...
 def installOn(self, other):
 super(PrivateApplication, self).installOn(other)
 other.powerUp(self, IWebTranslator)

 def findOrCreate(*a, **k):
 return other.store.findOrCreate(*a, **k)

 findOrCreate(StaticRedirect,
 sessioned=True,
 sessionless=False,
 prefixURL=u'',
 targetURL=u'/'+self.prefixURL).installOn(other, -1)

 findOrCreate(CustomizedPublicPage).installOn(other)

 findOrCreate(AuthenticationApplication)
 findOrCreate(PreferenceAggregator).installOn(other)
 findOrCreate(DefaultPreferenceCollection).installOn(other)
 findOrCreate(SearchAggregator).installOn(other)
 ...

After (reference [http://divmod.org/trac/browser/trunk/Mantissa/xmantissa/webapp.py?rev=10877#L433]):

class PrivateApplication(Item, PrefixURLMixin):
 ...
 implements(ISiteRootPlugin, IWebTranslator)
 ...
 powerupInterfaces = (IWebTranslator,)
 ...
 customizedPublicPage = dependsOn(CustomizedPublicPage)
 authenticationApplication = dependsOn(AuthenticationApplication)
 preferenceAggregator = dependsOn(PreferenceAggregator)
 defaultPreferenceCollection = dependsOn(DefaultPreferenceCollection)
 searchAggregator = dependsOn(SearchAggregator)

Glossary

	item.Item(store=store.Store, **kw)

	An object in an Axiom Store.

	Powerups

	An Axiom Item that acts as a type of Axiom plugin.

	store.Store([dbdir=None[, debug=False[, parent=None[, idInParent=None]]]])

	A database that Axiom Items can be stored in.

	Substore

	A Store that also exists as an Item in a parent Store.

So You Want To Change Your Schema

This is a very brief overview of how to write upgrade tests for Axiom. I hope
someone else will clean it up and add more information. This assumes
familiarity with Axiom, Divmod project layout, trial unit tests, Combinator, and
probably a dozen other things.

In order to understand the following you will need to look at these two modules:
axiom.test.historic.stub_catalog1to2 and
axiom.test.historic.test_catalog1to2

Do Stuff

	write a file, stub_foo1to2.py (this should look vaguely like the
aforementioned stub_catalog1to2.py) in your project’s tests/historic
directory, named appropriately for your object and versions. This is written
using the old API, the one present in trunk before your branch is merged.

	the number in the call to saveStub is the revision of
$COMBINATOR_PROJECTS/Divmod/trunk when you are writing the upgrader.

	% cd $COMBINATOR_PROJECTS/Divmod/branches/foo-19191919/Foo/foo/test/historic/
% chbranch Divmod trunk
% python stub_foo1to2.py # this will create a file called 'foo1to2.axiom.tbz2'.
% svn add foo1to2.axiom.tbz2

	write test_foo1to2.py (this should look vaguely like the aforementioned
test_catalog1to2.py), and it works like a regular trial test, except for
loading your stub database automatically.

Dynamic Typing

Reference to Any

A column in your schema may contain a reference to any row in the database.

Schema Migration: Automatic Upgrades

Axiom defines a comprehensive API for upgrading from one version of a schema to
the next, both writing upgraders, and scheduling them to be run.

Transaction Management and Consistency

While it is definitely possible to run in autocommit mode, axiom provides a
‘transact’ method to manage transactions for you. Transactions are reverted
when an exception crosses the transaction boundary, so errors will generally not
affect the state of your persistent data. When transactions are reverted, they
are reverted all the way: objects in memory are restored to the state they
were in before the transaction began, both in memory and on disk. Axiom also
takes care to keep Python identity consistent with database identity within a
process; if you load an object twice, and change one of its attributes, the
attribute will therefore be changed in both places, making it safe to share
references between different areas of code.

This is a critical feature for financial applications that is missing from other
popular Python database tools, such as SQLObject and SQLAlchemy.

Multi-Database

Items stored in an Axiom database keep an explicit reference to the Store that
they are a part of, rather than keeping an implicit store on the stack or in a
process-global location. ‘Explicit is better than implicit’. Again, other
popular tools make it difficult to share data between different databases.

Divmod Combinator

Combinator is a tool that Divmod Python programmers use to manage multiple
branches of our software. It integrates with Subversion.

It can be used to manage any number of branches with any number of projects.
It sets up your Python sys.path to point at the appropriate directories for
the set of branches you are currently working on. It also sets up your
PATH environment variable so that you can access any scripts that come
along with those projects.

It is mainly of interest if you are checking code out of SVN: users of installed versions of Divmod software can probably ignore this project (for now).

Note

Combinator does not currently work with SVN version 1.2 due to
changes in the way SVN stores its local repository. See #2144 for details.

Rationale

Subversion is a nice development system, but some tasks are unnecessarily
difficult. In particular, as we migrated from CVS to SVN, we discovered that
there are some operations which were impractically difficult in CVS but simple
in SVN, such as creating branches, but while the implementation of managing
and merging branches was adequate, there were too much flexibility, and too
many ways to subtly incorrectly merge a branch.

As one example of such a problem, in SVN one must always pass the revision
where the branch was created on trunk as an argument to the merge command, and
determining that number involves reading the output of another long-running
command. Some branches cannot be merged in this manner, depending on where the
branch was originally created from.

We developed some idioms for avoiding common errors during merge and encoded
them in a set of shell scripts. Then we discovered another set of common
problems: often developers working on a branch would do a bunch of work, and
then find themselves mystified that their changes did not seem to be taking
effect, due to a mismatch between the environment of their development tools
and the shells where test commands were being run.

Combinator began as a set of idioms and shell scripts and has evolved into a
set of Python tools which enforce a simple workflow for using SVN and Python
together to work on projects that use branches to gather changes together
while eliminating common errors.

Download

Combinator is in the Divmod repository.

If you want to use it without the rest of the Divmod projects, see the
CombinatorTutorial.

Use

Start with [source:trunk/Combinator/README.txt README.txt] to get your
environment set up.

Note

If you follow the UNIX setup instructions and an exception is raised
along the lines of OSError: [Errno 2] No such file or directory:
‘/home/YOURNAME/.local/lib/python2.4/site-packages’, you should update to
the latest trunk revision of Combinator - this bug has been fixed!

CombinatorTutorial is a guide to typical Combinator use including setting up
an SVN repository to play with.

Reading about [wiki:UltimateQualityDevelopmentSystem our development process]
is likely to give you some insight into how it’s intended to be used.

chbranch

chbranch is the tool for switching to a different branch. Provide
chbranch with a project name and branch name and it will modify all
Combinator-enabled environments so that Python imports are satisfied from that
branch of the project. If necessary, the branch will be checked out.

mkbranch

mkbranch is the tool for creating new branches. Provide mkbranch with
a project name and branch name and it will create a new branch with that
name, switch a copy of trunk to it, and do the equivalent of a chbranch to
the new branch.

unbranch

unbranch is the tool for merging a branch’s changes into trunk. First, use
chbranch to change to the branch to be merged. Then, make sure that the
trunk working copy either contains no changes or contains only changes which
you want included in the merge (note: it is strongly, strongly recommended
that if the merge will be committed that the trunk working copy contain no
changes). Finally, run unbranch with the project name and the changes
from the branch will be merged into the trunk working copy. They will not be
committed automatically.

Divmod Epsilon

A small utility package that depends on tools too recent for Twisted (like
datetime in python2.4) but performs generic enough functions that it can be
used in projects that don’t want to share Divmod’s other projects’ large
footprint.

Currently included:

	A powerful date/time formatting and import/export class (ExtimeDotTime),
for exchanging date and time information between all Python’s various ways
to interpret objects as times or time deltas.

	Tools for managing concurrent asynchronous processes within Twisted.

	A metaclass which helps you define classes with explicit states.

	A featureful Version class.

	A formal system for application of monkey-patches.

Download

	Stable: [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Epsilon-0.6.0.tar.gz?format=raw Get the most recent release - 0.6.0!] ([source:/tags/releases/Epsilon-0.6.0/NEWS.txt Release Notes])

	Trunk: svn co http://divmod.org/svn/Divmod/trunk/Epsilon Epsilon

See Also

	‘’Development’’ version of the [http://buildbot.divmod.org/apidocs/epsilon.html Epsilon API docs]

Divmod Mantissa

Mantissa is an application server. It provides integration between the
Divmod Axiom ‘smart’ object database, the Divmod Nevow web
templating/AJAX/COMET framework and the Twisted [http://twistedmatrix.com/] framework.

Read more about Mantissa’s philosophy and motivation:
Mantissa is the Deployment Target.

The goal of Mantissa is to provide a common platform that open-source
contributors can use to help us build customized additions to the Divmod
service. Divmod is going to offer a variety of different services, and if you
want to write something that hooks into our network, Mantissa is how you do
it.

Download

	Stable: [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Mantissa-0.7.0.tar.gz?format=raw Get the most recent release - 0.7.0!] ([source:/tags/releases/Mantissa-0.7.0/NEWS.txt Release Notes])

	Trunk: svn co http://divmod.org/svn/Divmod/trunk/Mantissa Mantissa (See the dependencies here: [source:trunk/Mantissa/DEPS.txt DEPS.txt])

Tutorials

	[wiki:DivmodAxiom/AxiomTutorial Exarkun’s Axiom and Mantissa tutorial]: Short, sharp Axiom/Mantissa tips and tricks.

	[wiki:MantissaWikiTutorial Mantissa Wiki Tutorial] A bit short on explanations, but complete

	[wiki:MantissaBlogTutorial Mantissa Blog Tutorial]

	[wiki:MantissaHowTo An example of how to build a Mantissa application (incomplete)]

See Also

	‘’Development’’ version of the [http://buildbot.divmod.org/apidocs/xmantissa.html Mantissa API docs]

	Several of the Axiom docs on the DivmodAxiom page are also Mantissa docs.

	[wiki:DivmodMantissa/Sharing /Sharing]: description of sharing functionality

	[wiki:DivmodMantissa/Concepts /Concepts]: other concepts with which Mantissa users should be familiar

Index

	Mantissa is the Deployment Target
	What Does That Mean?

	Examples of Where This Matters

Mantissa is the Deployment Target

Mantissa is the deployment target, not the Web.

What Does That Mean?

Mantissa is an application server; it can serve an application over several
protocols. HTTP is one of those protocols, but it [HttpIsntSpecial isn’t the
only one].

The web interface that Mantissa provides should be pluggable, but it should
‘’not’’ be so flexible that every Mantissa application provides its own fixed
skin and look and feel.

In other words, when you write a Mantissa application, Mantissa is the
deployment target. You deploy your application into a Mantissa application
container that faces the web, ‘’‘not’‘’ directly onto the web. Ideally the
Mantissa web container will be able to show components from several different
independently-developed applications simultaneously.

This means that you SHOULD NOT be writing your own IResource implementations
or full-page templates; applications should be plugging in somewhere on the
page. The set of interfaces developed for this right now (INavigableFragment,
INavigableElement) are not necessarily the best, but others will arise soon.

This is not gold-plating or over-engineering, as many seem to think; it
springs from a specific requirement. Divmod specifically intends to develop
something like 10 different applications, and launch each one separately, but
make it easy for people to sign up and for our subscribers to activate new
services. Each of those applications is pluggable and has integration points
with other applications. These applications are all going to share the same
web interface and should have a common look and feel, common interface
elements, and a shared infrastructure (for example: password management,
search).

Examples of Where This Matters

The most trivial example is side-by-side viewing. It would be good if the
tab-based navigation system could move towards being one where you click on a
tab to ‘go to a page’, vs. one where you click on a tab to ‘launch’ a Mantissa
object, enabling side-by-side viewing of multiple interactive objects on one
LivePage. (Donovan’s ill-fated launch-bar demonstration is what I mean by
this, for those who saw it before it was deleted.)

Obviously you cannot lay out the entire page in one component if it is going
to be displayed on the same page as a separate component.

A better example might be search. There should be one search box for every
Mantissa application. When a user searches, each application should be queried
(where ‘application’ in this case is equivalent to ‘thing installed on a
user’s store, implementing the appropriate search interface’)

The search results page should not be laid out or rendered by any particular
application, but instead, be an aggregation of all the search results for a
particular term. This means that the search page has to be part of the
framework, not part of an application.

Divmod Nevow

[[PageOutline(2-3,Contents)]]

[[Image(http://divmod.org/tracdocs/nevow_whtbck.png, left)]]

Nevow - Pronounced as the French ‘nouveau’, or ‘noo-voh’, Nevow is a web
application construction kit written in Python. It is designed to allow the
programmer to express as much of the view logic as desired in Python, and
includes a pure Python XML expression syntax named stan to facilitate this.
However it also provides rich support for designer-edited templates, using a
very small XML attribute language to provide bi-directional template
manipulation capability.

Nevow also includes Formless, a declarative syntax for specifying the types of
method parameters and exposing these methods to the web. Forms can be rendered
automatically, and form posts will be validated and input coerced, rendering
error pages if appropriate. Once a form post has validated successfully, the
method will be called with the coerced values.

Athena - Finally, Nevow includes Divmod Athena, a two-way bridge
between Javascript in a browser and Python on the server. Divmod Athena
is compatible with Mozilla, Firefox, Windows Internet Explorer 6, Opera 9 and
Camino (The Divmod Fan Club). Event handlers can be written in pure
Python and Javascript implementation details are hidden from the programmer,
with Nevow taking care of routing data to and from the server using
XmlHttpRequest [http://www.google.com/search?q=xmlhttprequest]. Athena
supports a widget authoring framework that simplifies the authoring and
management of client side widgets that need to communicate with the server.
Multiple widgets can be hosted on an Athena page without interfering with each
other. Athena supports automatic event binding so that that a DHTML event
(onclick,onkeypress,etc) is mapped to the appropriate javascript handler (which
in turn may call the server).

Download

	Stable: Latest release - 0.9.31 [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Nevow-0.9.31.tar.gz?format=raw]

	Trunk: svn co http://divmod.org/svn/Divmod/trunk/Nevow/ Nevow

Features

	XHTML templates: contain no programming logic, only nodes tagged with nevow
attributes

	data/render methods: simplify the task of separating data from presentation
and writing view logic

	stan: An s-expression-like syntax for expressing xml in pure python

	Athena: Cross-browser JavaScript library for sending client side events to
the server and server side events to the client after the page has loaded,
without causing the entire page to refresh

	formless: (take a look at formal [http://forms-project.pollenation.net]
for an alternate form library) For describing the types of objects which may
be passed to methods of your
classes, validating and coercing string input from either web or command-line
sources, and calling your methods automatically once validation passes.

	webform: For rendering web forms based on formless type descriptions,
accepting form posts and passing them to formless validators, and rendering
error forms in the event validation fails

Documentation

	The Nevow Guide [http://divmod.org/trac/browser/trunk/Nevow/doc/] An
introductory guide covering Nevow basics (Getting Started, Object Traversal,
Object Publishing, XML Templates, Deploying Nevow Applications)

	Nevow API [http://starship.python.net/crew/mwh/nevowapi/]

	Meet Stan [http://www.kieranholland.com/code/documentation/nevow-stan/]: An
excellent tutorial on the Nevow Document Object Model by
Kieran Holland

	Twisted Components [http://twistedmatrix.com/projects/core/documentation/howto/components.html]:
If you are unfamiliar with Interfaces and Adapters
then Nevow may not make much sense. This is essential reading.

	Error Handling: How to create custom error (404 and 500) pages

	Form Handling (A summary of Nevow form handling techniques)
* JavaScript WYSIWYG
Editors [http://forms-project.pollenation.net/cgi-bin/trac.cgi/wiki/WYSIWYGTextArea]
integration with Nevow/formal

	deployment

	emacs

	Putting Nevow Page under Apache Proxy

	Using Nevow with Genshi templates:
original [http://oubiwann.blogspot.com/2007/03/genshi-templates-in-nevow.html]
and
dynamic [http://oubiwann.blogspot.com/2008/03/genshi-on-nevow-revisited.html]

	Tutorial: Using Storm with Nevow

	Nevow & Athena FAQ

Bleeding Docs -
SURGEON GENERAL’S WARNING: Reading the docs listed below pertain to code
that has not yet been released and may cause Lung Cancer, Heart Disease,
Emphysema, and Pregnancy complications.

	Context Removal - Conversion steps for moving from
context-based Nevow code to context-less code.

Examples

To run the examples yourself (Source in [source:trunk/Nevow/examples]):

richard@lazar:/tmp$ cd Nevow/examples/
richard@lazar:/tmp/Nevow/examples$ twistd -noy examples.tac
2005/11/02 15:18 GMT [-] Log opened.
2005/11/02 15:18 GMT [-] twistd SVN-Trunk (/usr/bin/python 2.4.2) starting up
2005/11/02 15:18 GMT [-] reactor class: twisted.internet.selectreactor.SelectReactor
2005/11/02 15:18 GMT [-] Loading examples.tac...
2005/11/02 15:18 GMT [-] Loaded.
2005/11/02 15:18 GMT [-] nevow.appserver.NevowSite starting on 8080
2005/11/02 15:18 GMT [-] Starting factory <nevow.appserver.NevowSite instance at 0xb6c8110c>

... visit http://localhost:8080 and you’ll begin to appreciate the possibilities!

Help / Support

You will find plenty of experts on the mailing lists and in the chatrooms who
will happily help you, but please make sure you read all the documentation,
study all the examples and search the mailing list archives first. The
chances are that your question has already been answered.

	Mailing list: The twisted-web [http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-web] and
divmod-dev mailing list pages
have subscription instructions and links to the web based archives.

	IRC: Nevow developers and users can be found on Freenode [http://freenode.net] in
#twisted.web

	Blogs: dialtone [http://vvolonghi.blogspot.com], fzZzy [http://ulaluma.com/pyx/], Tv [http://tv.debian.net/blog/]

	Tickets
(More tickets [http://divmod.org/users/roundup.twistd/nevow/])

Related Projects

	Eocmanage [http://www.inoi.fi/open/trac/eocmanage]: An alternative to
Mailman built with Twisted and Nevow.

	Pollenation’s Formal Project [http://forms-project.pollenation.net/cgi-bin/trac.cgi]: A fresh take on
automatic form generation for Nevow, with a simpler interface and more input
types than Formless. This project was formerly known as ‘forms’.

	Divmod Mantissa: An extensible, multi-protocol, multi-user,
interactive application server built on top of Axiom and Nevow.

	Stiq [http://test.stiq.it]: A web news system built using Nevow

	WubWubWub [http://www.inoi.fi/open/trac/wubwubwub]: ‘Making Twisted.Web
look like Apache since 2002’ A fully featured Twisted based webserver for
serving multiple twisted.web and Nevow apps.

Index of Nevow documents

	Getting started with Divmod Nevow
	Getting Started: A basic page

	Putting it together

	Nevow Tutorial: part 4
	Using the children class attribute

	Form Handling (A summary of Nevow form handling techniques)
	Automatic Form Generation and Handling

	The Simplest Form - Example 1: A News Item Editor Page

	Manual Form Handling

	Error Handling

	Formless
	A Note About Formless TypedInterfaces

	More on Standard Form Controls and Input Types

	Custom Form Controls and Input Types

	Customising Form Layout

	Authentication and Authorisation
	Misc Recipes

	Context Removal
	Step 1

	Step 2

	Step 3

	Step 4

	Step 5

	Nevow Guard

	Unit Testing
	Functional Testing

	Server Side

	Client Side

	Command Line

	External Links

	Putting Nevow Page under Apache Proxy
	Example

	How that works ?

	Notes

	Alternative Method

	Reverse Proxy
	Example 1

	Solution

	Sample Nevow App

	Sample Lighttpd Config:

	Sample Apache Config (Ref)

	Example 2

	Sample Lighttpd Config:

	Sample Apache Config

	See Also

	Divmod Athena
	History

	Development Environment

	Simple LiveElement demo

	Testing

	Implementation

	Tickets

	Divmod Athena
	Adding LiveElements to a LivePage on fly tutorial

	Athena FAQ

	Nevow & Athena FAQ

	Demo: news edit

	Demo: results

	Tutorial: Using Storm with Nevow

	A possible approach with Nevow and Storm/twisted-integration
	Set up pool

	Create models

	and have fun

Getting started with Divmod Nevow

Note

This is incomplete documentation in progress.

Getting Started: A basic page

Currently the nevow.rend module contains the Page class which should be
subclassed to create new pages. A page is the added as a child of the root page,
or it’s instantiation can be defined in a childFactory or child_ special
method. rend.Page contains the context which is slowly being removed and will
soon be replaced by page.Page which should be easily adaptable.

We will construct a page that returns ‘Hello world!’, and propose some
structural alternatives.

from nevow import rend, loaders, tags

class APage(rend.Page):
 docFactory = loaders.stan(tags.html[
 tags.head[
 tags.title['Hello World Example']
],
 tags.body[
 tags.div(id='hello', _class='helloicator')['Hello World!']
]
])

This page uses Stan to construct an object-like representation which is
flattened into XHTML.

Rendering can also dispatch methods inside the page class known as render
specials.

from nevow import rend, loaders, tags

class APage(rend.Page):
 docFactory = loaders.stan(tags.html[
 tags.head[
 tags.title['Hello World Example']
],
 tags.body[
 tags.div(render=tags.directive('hi'))
]
])

 def render_hi(self, ctx, data):
 return ctx.tag[tags.div(id='hello', _class='helloicator')['Hello World']]

Putting it together

To put it together as a deployable application all we really need is an
application servlet.

A compact example of a boiler plate Nevow application could look like this

Page modules
from nevow import rend, loaders, tags

Deployment modules
from nevow import appserver
from twisted.application import service, internet

class APage(rend.Page):
 addSlash = True

 docFactory = loaders.stan(tags.html[
 tags.head[
 tags.title['Hello World Example']
],
 tags.body[
 tags.div(render=tags.directive('hi'))
]
])

 def render_hi(self, ctx, data):
 return ctx.tag[tags.div(id='hello', _class='helloicator')['Hello World']]

siteRoot = APage() # Set our page as the site root
site = appserver.NevowSite(siteRoot)

demo = internet.TCPServer(8080, site)

application = service.Application('demo')
demo.setServiceParent(application)

It’s common to encapsulate the specific service in a deployment function as
follows

Page modules
from nevow import rend, loaders, tags

Deployment modules
from nevow import appserver
from twisted.application import service, internet

class APage(rend.Page):
 addSlash = True

 docFactory = loaders.stan(tags.html[
 tags.head[
 tags.title['Hello World Example']
],
 tags.body[
 tags.div(render=tags.directive('hi'))
]
])

 def render_hi(self, ctx, data):
 return ctx.tag[tags.div(id='hello', _class='helloicator')['Hello World']]

def deployApp():
 siteRoot = APage() # Set our page as the site root
 site = appserver.NevowSite(siteRoot)
 return site

demo = internet.TCPServer(8080, deployApp())

application = service.Application('demo')
demo.setServiceParent(application)

The server can be started by issuing the command twistd -ny simple.py.

Note

It is possible to attach multiple sites and protocol servers to a
single service parent.

Nevow Tutorial: part 4

Using the children class attribute

##
Run using 'twistd -noy file.tac', then point your browser to
http://localhost:8080
A very simple Nevow site.
##

from twisted.application import service, internet

from nevow import appserver
from nevow import rend
from nevow import loaders
from nevow import tags as T

class SubPage (rend.Page):
 docFactory = loaders.stan (
 T.html [T.head (title = 'Sub Page'),
 T.body [T.h1 ['This is a Sub Page'],
 T.p ['I lack much of interest.'],
 T.p ['You might find ',
 T.a (href = '/') ['this'],
 ' more interesting'],
]
]
)

class MainPage (rend.Page):
 docFactory = loaders.stan (
 T.html [T.head (title = 'Main Page'),
 T.body [T.h1 ['This is the Main Page'],
 T.p ['Try going to the pages ',
 T.a (href = 'foo') ['foo'],
 ' or ',
 T.a (href = 'bar') ['bar'],
],
 T.p ['Don't try going ',
 T.a (href = 'baz') ['here'],
 ' as it doesn't exist.'
]
]
]
)

 children = {
 'foo' : SubPage(),
 'bar' : SubPage()
 }

##
Nevow Boilerplate
##

application = service.Application ('nevowdemo')
port = 8080
res = MainPage()
site = appserver.NevowSite (res)
webService = internet.TCPServer (port, site)
webService.setServiceParent (application)

Note the following:

	Instead of a childFactory() method we have an explicit mapping of child
path elements to page objects;

	Two independent child pages, foo and bar have been created. These
are persisted in the dictionary; they are not created on demand;

	An attempt to visit a child page that doesn’t have an entry in the
children dictionary will fail.

Of course, any page can have children, not just the main page. Try modifying
the example above to add another page below the SubPage objects.

Continue on to tutorial-five.

Form Handling (A summary of Nevow form handling techniques)

[[PageOutline(2-3,Contents)]]

There is more than one way to correctly handle forms in Nevow. This short
tutorial demonstrates three Nevow form handling techniques. It includes some
real world problems and (hopefully) demonstrates the most appropriate form
handling recipe to use in each case.

Examples are included on separate wiki pages for clarity and to make it easy for
the reader to download and run them. Where example files end in .tac.py, the
example should be run as twistd -noy Example.tac.py. Some screenshots are
provided so that you can quickly see the output of the examples.

Automatic Form Generation and Handling

Form handling is one of the most tedious parts of developing a web application.
Fortunately there are two sophisticated form handling libraries available for
Nevow; Formless and Pollenation Forms [http://forms-project.pollenation.net/]. Both offer automatic form generation,
validation and type coercion.

Formless is older and comes bundled with Nevow but can be confusing for
beginners and frustrating for more experienced users. That said, it is highly
customisable and allows html coder to precisely layout the form while still
taking advantage of the automatic validation and type coercion.

Pollenation Forms is both simpler for the beginner and offers powerful features
for the experienced user. It is the recommended form handling library for those
who do not need precise customisation of the form layout in the document
template.

The Simplest Form - Example 1: A News Item Editor Page

[[Image(Example1.0.png,200,float:right;clear:right;margin-bottom:2px;)]]
[[Image(Example1.1.png,200,float:right;clear:right;margin-bottom:2px;)]]
[[Image(Example1.2.png,200,float:right;clear:right;margin-bottom:2px;)]]

The following example demonstrates and compares the simplest use of Formless /
Pollenation Forms. We start with a basic tac file (src) containing everything but the form:

	the rend.Page subclass and docFactory

	a simple list to store news items

	a data_* method to expose the list of stories to the template

	a method to save new items to the database which redirects to a completion
page on success

	Formless Recipe (src): To expose the
method (saveNewsItem) in our web page with Formless we:
	import annotate and
webform

	update the template to include form layout css and a placeholder
(<n:invisible />) for our form renderer

	add the Formless standard css file as a static.File child resource * define a
corresponding bind_saveNewsItem method whose job is to return a description
of the saveNewsItem method arguments

	define a custom renderer which adds the results of webform.renderForms() to
the page output.

	Pollenation Forms Recipe (src): With
Pollenation Forms we:
	import
forms [http://forms-project.pollenation.net/cgi-bin/trac.cgi/browser/trunk/forms/__init__.py]

	mixin the forms.ResourceMixin [http://forms-project.pollenation.net/cgi-bin/trac.cgi/browser/trunk/forms/form.py#L303]
to our rend.Page subclass.

	update the template to include form layout css and a placeholder for our
form renderer (forms.ResourceMixin defines its own render_form method so we
use that)

	update our saveNewsItem method to accommodate the extra args that forms
will pass to it.

	define a special form_* method which builds and returns the form.

	A comparison of the two recipes:

	
	Pollenation Forms API is more transparent (subjective of course, but
generally accepted).

	Pollenation Forms generates cleaner html.

	Pollenation Forms form interface is more usable and provides clearer feedback
messages. (ie ‘Submit’ button rather than the Formless ‘Call’. Why?
Especially when the new Formless bind_* methods make it such a rigmarole to
customise the button...but more on that later.)

	Pollenation Forms default rendered form looks prettier (again subjective)
though in both cases, the generated html is sprinkled generously with class
and id attributes so that by adding your own CSS you can transform the way
the form looks.

So that looks like a pretty ringing endoresment of Pollenation Forms, but it
must be remembered that this is a comparison of what the two libraries produce
by default in very simple case. Equally important is how they can be extended
and customised to fit your application, and that’s what we start looking at
next.

	nevow-form-handling-formless

	nevow-form-handling-pollenation-forms

Manual Form Handling

Sometimes a form is so simple that it is easiest to write the form html by hand
and handle the result manually. The following code demonstrates a form with
which the user can choose his preferred number of items per page in a datagrid.

The <select> tag has a javascript onchange handler to automatically submit its
parent form and is presented inline with the content of its parent <p> tag. To
achieve this automatically using webform.renderForms() would have required
defining a custom form template with custom patterns etc (see later example).

(It should be noted that Formless or Pollenation Forms could be used here for
automatic coercion and validation of the form variables without employing their
form rendering machinery. An example of this may be added later.)

Error Handling

Just an example for now.

from zope.interface import implements

from twisted.application import service, strports
from twisted.web import http

from nevow import appserver, context, inevow, loaders, rend, static, tags as T, url

Inspired by http://divmod.org/users/wiki.twistd/nevow/moin.cgi/Custom404Page

class ErrorPage(rend.Page):
 def render_lastLink(self, ctx, data):
 referer = inevow.IRequest(ctx).getHeader('referer')
 if referer:
 return T.p[T.a(href=referer)['This link'],
 ' will return you to the last page you were on.']
 else:
 return T.p['You seem to be hopelessly lost.']

class The500Page(ErrorPage):
 implements(inevow.ICanHandleException)
 docFactory = loaders.xmlstr('''
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
<html xmlns:n='http://nevow.com/ns/nevow/0.1'>
 <head>
 <title>500 error</title>
 <style type='text/css'>
 body { border: 6px solid red; padding: 1em; }
 </style>
 </head>
 <body>
 <h1>Ouchie. Server error.</h1>
 <p>The server is down.</p>
 <p>Ohhh. The server.</p>
 <p n:render='lastLink' />
 </body>
</html>''')

 def renderHTTP_exception(self, ctx, failure):
 request = inevow.IRequest(ctx)
 request.setResponseCode(http.INTERNAL_SERVER_ERROR)
 res = self.renderHTTP(ctx)
 request.finishRequest(False)
 return res

class The404Page(ErrorPage):
 implements(inevow.ICanHandleNotFound)
 docFactory = loaders.xmlstr('''
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
<html xmlns:n='http://nevow.com/ns/nevow/0.1'>
 <head>
 <title>404'd !!!</title>
 <style type='text/css'>
 body { border: 6px solid orange; padding: 1em;}
 </style>
 </head>
 <body>
 <h1>OW! my browser!</h1>
 <p>Were you just making up names of files or what?</p>
 <p>(apologies to http://homestarrunner.com)</p>
 <p n:render='lastLink' />
 </body>
</html>''')
 def renderHTTP_notFound(self, ctx):
 return self.renderHTTP(ctx)

class OopsPage(rend.Page):
 def exception(self, ctx, data):
 1/0 # cause an exception on purpose
 docFactory = loaders.stan(exception)

class RootPage(rend.Page):
 docFactory = loaders.stan(
 T.html[T.head[T.title['Error Pages']],
 T.body[T.h1['The Only Real Page'],
 T.a(href='notherebaby')[
 'This link goes nowhere, pleasantly.'],
 T.br,
 T.a(href='oops')[
 'This link causes an exception!'],

]]
)

 def locateChild(self, ctx, segments):
 ctx.remember(The404Page(), inevow.ICanHandleNotFound)
 ctx.remember(The500Page(), inevow.ICanHandleException)
 return rend.Page.locateChild(self, ctx, segments)

root = RootPage()
root.putChild('oops', OopsPage())

site = appserver.NevowSite(root)
You should be able to do this instead of in locateChild, but there seems to be a bug
http://divmod.org/trac/ticket/526
#site.remember(The404Page(), inevow.ICanHandleNotFound)
#site.remember(The500Page(), inevow.ICanHandleException)

application = service.Application('News item editor')
strports.service('8080', site).setServiceParent(application)

Formless

A Note About Formless TypedInterfaces

One of the original goals for Formless was that as well as web forms, it should
be flexible enough to handle forms for other user interfaces e.g. curses, gtk.
The idea was that the developer should create a TypedInterface (an enhanced
Zope Interface) describing the signature of a method that might be invoked in
response to a form submission. By implementing this interface in a
Nevow.rend.Page, the developer could present a web UI. Elsewhere the same
TypedInterface could be implemented to provide a gtk UI for example. In
practice though, only the web form rendering code was maintained.

	see the Formless section of this 2004 paper by Donovan Preston, the original
author of Nevow and Formless [http://www.python.org/pycon/dc2004/papers/60/context]

Recently TypedInterface has been deprecated in favour of the newer and simpler
`bind_*` syntax. (see Nevow Changelog 2005-07-12) Confusingly for the beginner, most of the
Nevow examples still use TypedInterfaces, but hopefully these will be updated
in due course.

In the rest of this document we will use only the new bind_* syntax.

More on Standard Form Controls and Input Types

Custom Form Controls and Input Types

Customising Form Layout

TODO

Authentication and Authorisation

Misc Recipes

Using Formless to Render a Guarded Login Page

class LoginPage(rend.Page):
 docFactory = loaders.stan(
 T.html[
 T.head[T.title['Login Please']],
 T.body[
 webform.renderForms()
]
]
)

 def bind_login(self, ctx):
 return [
 ('ctx', annotate.Context()),
 ('username', annotate.String(required=True)),
 ('password', annotate.PasswordEntry(required=True)),
]

 def login(self, ctx, username, password):
 sess = inevow.ISession(ctx)
 req = inevow.IRequest(ctx)
 credentials = UsernamePassword(username, password)

 def errorHandler(error):
 #error.trap(UnauthorizedLogin)
 raise annotate.ValidateError(
 {},
 formErrorMessage='Your username and / or password were not recognised.',
 partialForm={'username':username})

 def successHandler(pageAndRemainingSegments):
 return url.root

 return sess.guard.login(req, sess, credentials, []).addCallback(successHandler).addErrback(errorHandler)

Context Removal

Step 1

Change Resource Inheritance

The Page class is now imported from nevow.page instead of
nevow.rend. Class declarations change as indicated below.

From:

class Root(rend.Page):
...

To:

class Root(page.Page):
...

Step 2

Change ``child_`` Class Attributes

Class child_* class attributes change in that the prefix is no longer needed
and all child_s are stored together in a dict.

From:

...
 child_foo = RendPageInstance
...

To:

...
 children = {
 'foo': PagePageInstance,
 ...}
...

Step 3

Remove Context from Signatures

The context object is no longer passed in the method signatures. Passed
parameters changes as indicated below.

From:

...
 def render_foo(self, context, data):
 ...

To:

...
 def render_foo(self, request, tag):
 ...

Step 4

Use Decorators

The method names no longer need to contain render_ and child_.
Method names change as indicated below.

From:

...
 def render_foo(self, context, data):
 ...
...
 def child_bar(self, context):
 ...

To:

...
 def foo(self, request, tag):
 ...
 page.renderer(foo)
...
 def bar(self, request):
 ...
 page.child(bar)

Or, for a version of python that supports the decorator syntax:

...
 @page.renderer
 def foo(self, request, tag):
 ...
...
 @page.child
 def bar(self, request):
 ...

Step 5

Change Fill Slot Calls

The fillSlots() calls are still tag methods, but tag is now passed
directly to render methods and not accessed as a context attribute. Make
changes as indicated below.

From:

...
 def render_entries(self, ctx, data):
 ctx.tag.fillSlots('author', 'The Humble Author')
 ctx.tag.fillSlots('title', 'The Excellent Title')
 ctx.tag.fillSlots('content', 'The Interesting Content')
 return ctx.tag

To:

...
 def entries(self, request, tag):
 tag.fillSlots('author', 'The Humble Author')
 tag.fillSlots('title', 'The Excellent Title')
 tag.fillSlots('content', 'The Interesting Content')
 return tag
 page.renderer(entries)

Nevow Guard

Nevow Guard provides an authentication wrapper for pages (and their child pages)

Unit Testing

Note

Much of this page documents the current development version of Nevow’s
testing features, not the current release version. Make sure you are using
the right version of the code if you attempt to make use of this
documentation.

Divmod uses the stand-alone JavaScript interpreter SpiderMonkey [http://www.mozilla.org/js/spidermonkey/] to run unit tests on some portions
of our JavaScript sources. You can find several examples in the Divmod
repository.

These unit tests are valuable: they reveal simple errors, provide a kind of
documentation as to the purpose of various functions, and ensure that the code
is exercised in as much isolation as is possible. However, they are not
all-encompassing. After all, they aren’t even executed by the same runtime that
will be used by any user to execute them.

nit can also be used for unit testing (see below).

Functional Testing

To account for this, Nevow provides nit, a runner for tests which are
designed to be run by an actual browser. Nit tests are placed in Python source
files named with the livetest_ prefix. There are several examples
of this kind of test in the Divmod repository as well.

If you are familiar with XUnit [http://en.wikipedia.org/wiki/XUnit], the API
presented by nit should present few surprises. The primary interface of
interest to test developers is the TestCase class, which is subclassed and
extended to define new tests.

Server Side

nevow.livetrial.testcase.TestCase is the base class for the server-side
implementation of test methods. Subclasses of TestCase define the
JavaScript class which will implement the client-side portion of test methods as
well as the document which will be used to render them. TestCase is a
nevow.athena.LiveFragment subclass, so it can also define methods which are
exposed to the client.

A TestCase might be no more complex than the following:

from nevow.livetrial.testcase import TestCase
from nevow.athena import expose

class AdditionTestCase(TestCase):
 jsClass = 'Examples.Tests.AdditionTestCase'

Client Side

On the JavaScript side, test authors subclass Nevow.Athena.Test.TestCase and
define actual test methods on it. These methods may return Deferreds if they
are testing asynchronous APIs. Test methods which return a Deferred which
eventually errbacks are treated as failing; those which return a Deferred which
eventually callbacks are treated as succeeding. Tests which return anything
other than a Deferred are also treated as succeeding, and tests which throw any
error are treated as failing.

The JavaScript half of the above example might look like this:

// import Nevow.Athena.Test

Examples.Tests.AdditionTestCase = Nevow.Athena.Test.TestCase.subclass('Examples.Tests.AdditionTestCase');
Examples.Tests.methods(
 function test_integerAddition(self) {
 self.assertEqual(1 + 1, 2);
 },

 function test_stringAddition(self) {
 self.assertEqual('a' + 'a', 'aa');
 });

Command Line

Tests are collected into a suite automatically by the nit command line. For
example, nit nevow will launch a server which runs all of Nevow’s nits. The
server listens on http://localhost:8080/ by default. To run the tests, visit
that URL with a browser and click the Run Tests button.

External Links

You might want to look at this walkthrough on how to write tests for Athena [http://blackjml.livejournal.com/21602.html].

Putting Nevow Page under Apache Proxy

It is generally not recommended to put the staff that requires many simultaneous
connections under apache, unless Event MPM is used. But sometimes that’s just
fine, e.g for tests.

Imagine you want to hide http://localhost:8080/ behind http://go.site.com/

This is what you put on apache with mod_proxy enabled:

<VirtualHost *:80> # of course, *:80 can be replaced by something

 # external site URL
 ServerName go.site.com

 # internal (proxied) URL, note vhost/<protocol>/<host>/ scheme (*)
 ProxyPass / http://localhost:8080/vhost/http/go.site.com/

</VirtualHost>

Usually people also add ‘ProxyRequests Off’ to their apache conf to ensure that
apache won’t be used as free proxy.

But it’s clearly not enough to setup apache, because it will send requests to
Twisted asking http://localhost:8080/.. , while Nevow application should process
request as if it were http://go.site.com.

There is a special module nevow.vhost.VHostMonsterResource() (please note
nevow.vhost is used, not twisted.web.vhost), which takes url in the form
http://localhost:8080/vhost/http/go.site.com/* and fixes request to make
Resource think that it were direct go.site.com/* .

Example

Let’s hide a resource MyResource, which works perfectly as
http://localhost:8080, under http://go.site.com.

Here is a brief ‘proxy.tac’ example, which can be run by ‘twistd -noy proxy.tac’

from twisted.application import service, strports
from nevow import appserver, inevow, rend, loaders, vhost
from zope.interface import implements

This is the root resource we are hiding behind proxy
It *was* working as http://localhost:8080, but now it should *become* http://go.site.com
class MyResource(rend.Page):

 def child_(self, ctx):
 return HelloPage()

A simple root page, *was* http://localhost:8080/,
will *become* http://go.site.com/
(or http://localhost:8080/vhost/http/go.site.com/ from proxied url)
class HelloPage(rend.Page):

 docFactory = loaders.xmlstr('''\
<html><body>Hello</body></html>
''')

thanks Damascene for this wrapper
it delegates /vhost/* requests to VHostMonsterResource, which fixes request
class VhostFakeRoot:
 '''
 I am a wrapper to be used at site root when you want to combine
 vhost.VHostMonsterResource with nevow.guard. If you are using guard, you
 will pass me a guard.SessionWrapper resource.
 Also can hide generic resources
 '''
 implements(inevow.IResource)
 def __init__(self, wrapped):
 self.wrapped = wrapped

 def renderHTTP(self, ctx):
 return self.wrapped.renderHTTP(ctx)

 def locateChild(self, ctx, segments):
 '''Returns a VHostMonster if the first segment is 'vhost'. Otherwise
 delegates to the wrapped resource.'''
 if segments[0] == 'vhost':
 return vhost.VHostMonsterResource(), segments[1:]
 else:
 return self.wrapped.locateChild(ctx, segments)

setup/run site
site = appserver.NevowSite(VhostFakeRoot(MyResource()))
application = service.Application('go')

strports.service('8080', site).setServiceParent(application)

How that works ?

	Request comes as http://localhost:8080/vhost/http/go.site.com/<**>

	VhostFakeRoot.locateChild is called

	‘vhost’ is stripped from path and http/go.site.com/* comes to
VHostMonsterResource

	http is stripped by VHostMonsterResource, request is fixed

	go.site.com is stripped by VHostMonsterResource, request is fixed

	MyResource comes into play and does its job with <**>

Notes

	Headers from Twisted are consumed by apache.. That may be a problem

	Nevow.livePage stuff had problems working through proxy

Alternative Method

There’s an alternative (a lot easier method) to achieve the desired result.
Just do it in apache config:

<VirtualHost [insert IP or * here]:80>
 ServerName mysub.mydomain.com

 ErrorLog /var/log/apache2/mysub.mydomain.com_error_log
 CustomLog /var/log/apache2/mysub.mydomain.com_access_log combined

 ProxyVia On
 ProxyPass / http://127.0.0.1:8080/
 ProxyPassReverse / http://127.0.0.1:8080/
</VirtualHost>

Also see Reverse Proxy.

Reverse Proxy

A Reverse Proxy forwards the requests it receives from the internet to one or
more slave webservers. Lighttpd and Apache both provide reverse proxy modules.
Any absolute urls in the response will contain the scheme [http://en.wikipedia.org/wiki/URL#URL_scheme] (possibly the hostname) and port
number on which the slave is running. These must be rewritten before being
returned to the client. In Nevow this can be handled by
vhost.VHostMonsterResource.

Example 1

You have an existing webserver running on port 80, doing name based virtual
hosting [http://httpd.apache.org/docs/2.0/vhosts/name-based.html] of several
existing websites and want to run a Nevow based site alongside them on the same
IP.

Solution

Forward all requests at this virtual host to the Nevow slave server.

Sample Nevow App

from zope.interface import implements
from twisted.application import service, strports
from nevow import appserver, inevow, loaders, rend, url, vhost

class MyPage(rend.Page):
 '''
 I am a simple resource for demo purposes only. I will return a 'MyPage'
 for any child you ask me to locate. I display the current url as calculated
 nevow.url.
 '''
 addSlash = True
 docFactory = loaders.xmlstr('''
<html xmlns:n='http://nevow.com/ns/nevow/0.1'>
 <head>
 <title n:render='urlpath'></title>
 </head>
 <body>
 <h1 n:render='urlpath'></h1>
 </body>
</html>
''')

 def render_urlpath(self, ctx, data):
 return ctx.tag[url.here]

 def locateChild(self, ctx, segments):
 return MyPage(), segments[1:]

class VhostFakeRoot:
 '''
 I am a wrapper to be used at site root when you want to combine
 vhost.VHostMonsterResource with nevow.guard. If you are using guard, you
 will pass me a guard.SessionWrapper resource.
 '''
 implements(inevow.IResource)
 def __init__(self, wrapped):
 self.wrapped = wrapped

 def renderHTTP(self, ctx):
 return self.wrapped.renderHTTP(ctx)

 def locateChild(self, ctx, segments):
 '''Returns a VHostMonster if the first segment is 'vhost'. Otherwise
 delegates to the wrapped resource.'''
 if segments[0] == 'vhost':
 return vhost.VHostMonsterResource(), segments[1:]
 else:
 return self.wrapped.locateChild(ctx, segments)

siteRoot = VhostFakeRoot(MyPage())
application = service.Application('reverse proxy / vhost example')
strports.service('8080', appserver.NevowSite(siteRoot)).setServiceParent(application)

Save as eg sample.tac and run using twistd -noy sample.tac

Sample Lighttpd Config:

$HTTP['host'] =~ '^(www.example.com)$' {
 url.rewrite-once = ('^/(.*)' => '/vhost/http/%0/$1')
 # In lighttpd we alter the path manually using rewrite rule. %0
 # refers to the hostname and $1 is the path.
 proxy.server = ('' =>
 ((
 'host' => '127.0.0.1',
 'port' => 8080
))
)
}

If you prefer a mixed deployment strategy where static content is served through
the faster lighttpd while dynamic content is still served by twisted you can use
the following recipe.

$HTTP['host'] =~ '^(www.example.org)$' {
 url.rewrite-once = (
 '^/static/.*' => '$0',
 '^/(.*)' => '/vhost/http/%0/$1'
)
 $HTTP['url'] !~ '^/static/' {
 proxy.server = ('' =>
 ((
 'host' => '127.0.0.1',
 'port' => 8080
))
)
 }
 server.document-root = '/path/to/your/project/trunk/'
}

	There are 2 assumptions in this recipe:

	
	The static content is located at the /static/ subtree of the website.

	The project root contains a ‘static’ directory that is used to serve static
content.

Sample Apache Config (Ref [http://divmod.org/users/wiki.twistd/nevow/moin.cgi/ApacheSetup])

<VirtualHost www.example.com>
ProxyPass / http://localhost:8080/vhost/http/www.example.com/
ServerName www.example.com
</VirtualHost>

Example 2

Nevow is only to be used for part of an existing static site at a non-root url

Sample Lighttpd Config:

TODO

Sample Apache Config

TODO

See Also

	http://lighttpd.net/documentation/proxy.html

	http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#proxypass

Divmod Athena

Athena is a two-way communication channel for Nevow applications. Peruse the
examples. Or make this page better.

Nevow & Athena FAQ

History

Athena is the best-of-breed approach to developing interactive javascript (AJAX
/ Comet) applications with DivmodNevow. It should be noted that it supersedes
previous solutions, such as livepage. These prior solutions should not be used
with Athena development. Before using Athena, you may want to check out the
Getting started with Divmod Nevow.

Development Environment

If you haven’t developed with JavaScript before, you may wish to set up your
development environment before beginning with Athena. Some tips may be
available, depending on your preferred tools:

	nevow-athena-emacs

	Firebug [http://www.getfirebug.com/] - Firefox based javascript debugger

Simple LiveElement demo

Subclass nevow.athena.LiveElement and provide a docFactory which uses
the liveElement renderer:

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

Put the result onto a nevow.athena.LivePage somehow:

class MyPage(athena.LivePage):
 docFactory = loaders.stan(T.html[
 T.head(render=T.directive('liveglue')),
 T.body(render=T.directive('myElement'))])

 def render_myElement(self, ctx, data):
 f = MyElement()
 f.setFragmentParent(self)
 return ctx.tag[f]

 def child_(self, ctx):
 return MyPage()

Put the page into a nevow.appserver.NevowSite somehow:

from nevow import appserver
site = appserver.NevowSite(MyPage())

Hook the site up to the internet:

from twisted.application import service, internet

application = service.Application('Athena Demo')
webService = internet.TCPServer(8080, site)
webService.setServiceParent(application)

Put it all into a .tac file and run it:

twistd -noy myelement.tac

And hit http://localhost:8080/. You now have an extremely simple Athena page.

Customizing Behavior

Add a Twisted plugin which maps your module name onto your JavaScript source
file:

from nevow import athena

myPackage = athena.JSPackage({
 'MyModule': '/absolute/path/to/mymodule.js',
 })

Place this Python source file into nevow/plugins/ (the Twisted plugin
documentation [http://twistedmatrix.com/projects/core/documentation/howto/plugin.html]
describes where else you can put it, with the exception that Nevow plugins
should be placed beneath a nevow directory as opposed to a twisted
directory).

In the JavaScript source file (in this case, mymodule.js), import Nevow.Athena:

// import Nevow.Athena

Next, subclass the JavaScript Nevow.Athena.Widget class (notice the module
name that was defined in the plugin file):

MyModule.MyWidget = Nevow.Athena.Widget.subclass('MyModule.MyWidget');

Now, add a method to your newly defined class:

MyModule.MyWidget.methods(
 function echo(self, argument) {
 alert('Echoing ' + argument);
 return argument;
 });

Define the JavaScript class which will correspond to your LiveElement
subclass:

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 jsClass = u'MyModule.MyWidget'
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

Invoking Code in the Browser

Add some kind of event source (in this case, a timer, but this is incidental)
which will cause the server to call a method in the browser:

from twisted.internet import reactor

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 jsClass = u'MyModule.MyWidget'
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

 def __init__(self, *a, **kw):
 super(MyElement, self).__init__(*a, **kw)
 reactor.callLater(5, self.myEvent)

 def myEvent(self):
 print 'My Event Firing'
 self.callRemote('echo', 12345)

Start up the server again and revisit <http://localhost:8080>.

Invoking Code on the Server

Add an event source (in this case, a user-interface element, but this is
incidental) which will cause the browser to call a method on the server:

class MyElement(athena.LiveElement):
 docFactory = loaders.stan(T.div(render=T.directive('liveElement'))[
 T.input(type='submit', value='Push me',
 onclick='Nevow.Athena.Widget.get(this).clicked()')])
 ...

Update the JavaScript definition of MyModule.MyWidget to handle this event
and actually call the server method:

MyModule.MyWidget.method(
 'clicked',
 function(self) {
 self.callRemote('echo', 'hello, world');
 });

Add a method to MyElement which the browser will call, and expose it to the
browser:

class MyElement(athena.LiveElement):
 ...

 def echo(self, argument):
 print 'Echoing', argument
 return argument
 athena.expose(echo)

Start up the server again and revisit <http://localhost:8080>.

Download the files for this tutorial:

	myelement.tac [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/myelement.tac?format=raw]

	mymodule.js [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/mymodule.js?format=raw]

	mymodule_pkg.py [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/mymodule_pkg.py?format=raw]

Testing

Visit the athena-testing or Test Driven Development with Athena [http://blackjml.livejournal.com/21602.html]

Implementation

Though Divmod’s use of it predates the term by several years, Athena uses what
some have come to call Comet. Athena’s JavaScript half makes an HTTP request
before it actually needs to retrieve information from the server. The server
does not respond to this request until it has something to tell the browser. In
this way, the server can push events to the browser instantly.

Tickets

See open tickets for Athena here [http://divmod.org/trac/query?status=new&status=assigned&status=reopened&component=Nevow&keywords=%7Eathena&order=priority].

Divmod Athena

Adding LiveElements to a LivePage on fly tutorial

Javascript function Nevow.Athena.Widget.addChildWidgetFromWidgetInfo [http://divmod.org/trac/browser/trunk/Nevow/nevow/js/Nevow/Athena/__init__.js#L897]
can be used to do that.

All you need on the server is to return a LiveElement instance:

from nevow import athena

class WhateverElement(athena.LiveElement):

 @athena.expose
 def getNewLiveElement(self):
 return SomeOtherLiveElement()

Note: you should also call setFragmentParent on the new LiveElement (see
here [http://buildbot.divmod.org/apidocs/nevow.athena._LiveMixin.html#setFragmentParent]).

On the client, you need some code & a free XML node to append the new element
to:

// import Nevow.Athena
// import Divmod.Runtime

What.Ever = Nevow.Athena.Widget.subclass('What.Ever');
What.Ever.methods = (

 function foo(self) {
 d = self.callRemote('getNewLiveElement');

 d.addCallback(

 function liveElementReceived(le) {

 d2 = self.addChildWidgetFromWidgetInfo(le);
 d2.addCallback(
 function childAdded(widget) {

 /* widget is a Nevow.Athena.Widget instance and it
 * represents a newly created widget for the liveelement
 * got from the server */

 /* find a node to attach the widget to: */
 self.nodeById('lastNode').appendChild(widget.node);

 /* you could also use, for example:
 *
 * var node = self.nodeById('lastNode');
 * node.replaceChild(widget.node, node.firstChild);
 */
 });

 });

Athena FAQ

	When I reload a page, the server logs a traceback ending with
exceptions.AssertionError: Cannot render a LivePage more than once

	LivePage instances maintain server-side state that corresponds to the
connection to the browser. Because of this, each LivePage instance can only be
used to serve a single client. When you serve LivePages, make sure that you
create a new instance for each render pass.

Here is an example(from Dominik Neumann) about using LivePage as a main page:
Wrap you Index page like:

class RootPage(Index):
 '''
 always return a new Index
 '''
 def child_(self, ctx):
 return Index()

	I can’t debug athena on Internet explorer. what gives?

	Athena include the livefragment javascript in the body of the document via a
script tag. Visual studio doesn’t appear to be happy with this and does not let
you set break points. If you load the javascript in the head of the document
then you can set a break point in your athena livefragment javascript using
visual studio. The best way I found to do this is manually include the
javacript in the header and then information athena that the livefragment
javascript is already loaded. One way to do this is to call the ‘hidden’
_shouldInclude method on the athena livepage instance, e.g
self._shouldInclude(‘yourjsmodule’). This will let athena know that the
javascript is already loaded and not to load it twice.

	Why doesn’t Athena support Safari?

	Athena supports recent versions of Safari.

	How can I unit-test javascript code using Athena?

	The same way you unit-test your ordinary Twisted [http://twistedmatrix.com] or Divmod [http://divmod.org] software: by using
trial [http://twistedmatrix.com/trac/wiki/TwistedTrial]. You can find
athena-testing. Have a look at nevow.test.test_javascript [http://divmod.org/trac/browser/trunk/Nevow/nevow/test/test_javascript.py] to
see, how tests are prepared and run.

	How can I add elements to an already rendered LivePage?

	See Nevow.Athena.Widget.addChildWidgetFromWidgetInfo [http://divmod.org/trac/browser/trunk/Nevow/nevow/js/Nevow/Athena/__init__.js#L897]
and the nevow-athena-tutorials-live-elements-on-fly

Nevow & Athena FAQ

	When I reload a page, the server logs a traceback ending with
exceptions.AssertionError: Cannot render a LivePage more than once

	LivePage instances maintain server-side state that corresponds to the
connection to the browser. Because of this, each LivePage instance can only
be used to serve a single client. When you serve LivePages, make sure that
you create a new instance for each render pass.

	I can’t debug athena on Internet explorer. what gives?

	Athena include the livefragment javascript in the body of the document via a
script tag. Visual studio doesn’t appear to be happy with this and does not
let you set break points. If you load the javascript in the head of the
document then you can set a break point in your athena livefragment
javascript using visual studio. The best way I found to do this is manually
include the javacript in the header and then information athena that the
livefragment javascript is already loaded. One way to do this is to call the
‘hidden’ _shouldInclude method on the athena livepage instance, e.g
self._shouldInclude(‘yourjsmodule’). This will let athena know that the
javascript is already loaded and not to load it twice.

	Why doesn’t Athena support Safari?

	Safari has a broken JS implementation that throws an error when a nested
‘named’ function is encountered, e.g.

methods(function foo(self) {},function bar(self) {});

A workaround would be to use anonymous functions instead of named functions.
Another issue is that someone needs to implement a custom runtime module in
runtime.js to support Safari.

	How can I unit-test javascript code using Athena?

	The same way you unit-test your ordinary Twisted or Divmod software: by
using trial. You can find athena-testing. Have a look at
nevow.test.test_javascript to see, how tests are prepared and run.

Demo: news edit

from twisted.application import service, strports
from nevow import appserver, loaders, rend, static, url

class NewsEditPage(rend.Page):
 docFactory = loaders.xmlstr('''
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
<html xmlns:n='http://nevow.com/ns/nevow/0.1'>
 <head>
 <title>Example 1: A News Item Editor</title>
 <link rel='stylesheet' href='form_css' type='text/css' />
 </head>
 <body>
 <h1>Example 1: A News Item Editor</h1>
 <fieldset>
 <legend>Add / Edit News Item</legend>
 <p>Form Goes Here</p>
 </fieldset>

 <ol n:render='sequence' n:data='newsItems'>
 <li n:pattern='item' n:render='mapping'>
 <n:slot name='title' />: <n:slot name='description' />

 </body>
</html>
''')

 def __init__(self, *args, **kwargs):
 self.store = kwargs.pop('store')

 def saveNewsItem(self, newsItemData):
 self.store.append(newsItemData)
 return url.here.click('confirmation')

 def data_newsItems(self, ctx, name):
 return self.store

class ConfirmationPage(rend.Page):
 docFactory = loaders.xmlstr('''
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
<html>
 <body>
 <h1>Your item has been saved</h1>

 Go back

 </body>
</html>
''')

A place to store news items. A list of dicts in this simple case.
store = [dict(title='Lorum Ipsum', description='''
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed sed enim mollis
nulla faucibus aliquet. Praesent nec nibh. Nam eget pede. Nam tincidunt purus id
lorem. Vestibulum lectus nisl, molestie vitae, feugiat egestas, sodales et,
tellus. Vivamus eu libero. Nulla facilisi. Nullam nec dolor. Proin ac diam at
neque auctor pulvinar. Maecenas eros nibh, fermentum at, eleifend at, malesuada
eu, nunc. Sed posuere felis eu ipsum. In volutpat. Phasellus viverra. Quisque
dignissim mattis turpis. Maecenas accumsan ipsum vel orci. Cras ac lectus. Sed
nec nisl. Integer iaculis elit scelerisque sapien. Curabitur ac diam.
''')]

rootResource = NewsEditPage(store=store)
rootResource.putChild('confirmation', ConfirmationPage())

application = service.Application('News item editor')
strports.service('8080', appserver.NevowSite(rootResource)).setServiceParent(application)

Demo: results

import string

from twisted.application import service, strports
from nevow import appserver, inevow, rend, tags as T, loaders

class ResultsPage(rend.Page):
 docFactory = loaders.xmlstr('''
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>
<html xmlns:n='http://nevow.com/ns/nevow/0.1'>
 <body>
 <form action='.'>
 <table border='1'>
 <thead>
 <tr>
 <th>Number</th>
 <th>Letter</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td colspan='2'>
 Showing <select
 n:render='itemsPerPageOptions'
 name='itemsPerPage'
 onchange='this.form.submit();' /> items per page
 </td>
 </tr>
 </tfoot>
 <tbody n:render='sequence' n:data='alphabet'>
 <tr n:pattern='item' n:render='mapping'>
 <td><n:slot name='index' /></td>
 <td><n:slot name='letter' /></td>
 </tr>
 </tbody>
 </table>
 </form>
 </body>
</html>
''')
 itemsPerPageChoices = range(10, 60, 10)

 def beforeRender(self, ctx):
 sess = inevow.ISession(ctx)
 if not hasattr(sess, 'pagerPrefs'):
 sess.pagerPrefs = dict(itemsPerPage = self.itemsPerPageChoices[0])

 try:
 itemsPerPage = abs(int(ctx.arg('itemsPerPage', 0)))
 except ValueError: #when the submitted value can't be converted to int
 itemsPerPage = 0

 if itemsPerPage > 0 and itemsPerPage in self.itemsPerPageChoices:
 sess.pagerPrefs['itemsPerPage'] = itemsPerPage

 def render_itemsPerPageOptions(self, ctx, data):
 options = [T.option(value=i)[i] for i in self.itemsPerPageChoices]
 default = inevow.ISession(ctx).pagerPrefs.get('itemsPerPage')
 #extract the default option tag and set it's selected attribute
 options[self.itemsPerPageChoices.index(default)](selected='selected')
 return ctx.tag.clear()[options]

 def data_alphabet(self, ctx, name):
 alphabet = string.ascii_lowercase
 #a dummy dataset, in real life this might come from a DB.
 data = [dict(index=i, letter=alphabet[i]) for i in range(len(alphabet))]
 return data[:inevow.ISession(ctx).pagerPrefs.get('itemsPerPage')]

application = service.Application('items per page')
strports.service('8080', appserver.NevowSite(ResultsPage())).setServiceParent(application)

Tutorial: Using Storm with Nevow

Note: There is work on integrating Storm with Twisted
(storm/twisted-integration [https://code.launchpad.net/~therve/storm/twisted-integration]). Until then,
the best way is probably to use deferToThread.

(Here is A possible approach with Nevow and Storm/twisted-integration)

Before a tutorial can be written on how to use storm in Nevow, someone needs to
figure out ‘best practices for using Storm in asynchronous codebases.’ From a
chat in #storm on freenode (11 July 2007):

[5:13pm] dialtone: storm API is fine, one just needs to see if: a) it's thread
 safe and b) objects returned can be modified in a different
 thread
[5:13pm] dialtone: and then committed in another one yet
[5:13pm] radix: dialtone: It is certainly thread-safe, but you should not use
 the same Store in multiple threads
[5:14pm] dialtone: how do you do with deferToThread then?
[5:14pm] radix: dialtone: I don't know.
[5:14pm] radix: dialtone: Probably you don't load the objects until you get
 into the other thread.
[5:14pm] dialtone: that's sort of a problem probably, unless there's an
 alternative solution
[5:15pm] radix: dialtone: Nobody has figured out best practices for using Storm
 in asynchronous codebases yet.
[5:15pm] dialtone: ouch :(
[5:15pm] radix: dialtone: (That is, assuming your application actually wants to
 make the database operations asynchronous)
[5:16pm] dialtone: I can accept it being synchronous, but run in a different
 thread using deferToThread
[5:16pm] radix: dialtone: for example, it would be very reasonable to use Storm
 like Axiom: with SQLite, just blocking on database interaction
[5:16pm] dialtone: radix: yes well... but that comes with a lot of restrictions
 in itself
[5:17pm] radix: dialtone: I even have a Twisted server which uses Storm to talk
 to postgres in a totally blocking manner
[5:17pm] radix: but it's not a very typical server
[5:17pm] dialtone: sqlite doesn't really scale that well with high concurrency
 and scaling a shared sqlite instance is pretty hard
[5:17pm] dotz: dialtone: What's wrong with 'ceate a high level API for data
 manipulation and retrival, use some rpc mechanism, like pb,
 and make the hi-level database backend another process'?
[5:18pm] dialtone: dotz: that' waaay more effort than what I'm currently doing
[5:18pm] radix: dialtone: I'm sure there are some clever things that can be done
 to use Storm in asynchronous contexts, and I'm fairly interested
 in learning about them
[5:18pm] dotz: dialtone: and what are you currently doing?
[5:18pm] dialtone: as I said: I'm using the query builder from sqlalchemy to build
 and execute queries that return resultsets with a dict-like API
[5:19pm] dialtone: I simply write the queries and use the dict-like APi in nevow
[5:19pm] dialtone: and I run the functions in a separate thread with deferToThread
[5:20pm] dialtone: radix: maybe writing a store class that keeps track of which
 threads owns which connection and then reuse the connection when
 needed
[5:20pm] dialtone: this way you could share the store object and run queries
 independently of the context
[5:20pm] radix: dialtone: maybe. I'm not sure it'd be that simple.

A possible approach with Nevow and Storm/twisted-integration

(thanks to these very nice guys in mailing list)

Set up pool

from storm.databases.sqlite import SQLite
from storm.uri import URI
from storm.twisted.store import StorePool

database = SQLite(URI('sqlite:///test.db'))
pool = StorePool(database, 5, 10)

pool.start()

Create models

from storm.locals import *
from storm.twisted.wrapper import DeferredReference

class People(object):
 __storm_table__ = 'people'

 id = Int(primary=True)
 email = Unicode()
 nickname = Unicode()
 passwd = Unicode()
 avatar = Unicode()

class Topic(object):
 __storm_table__ = 'topic'

 id = Int(primary=True)
 topic_title = Unicode()
 keyword = Unicode()
 content = Unicode()
 people_id = Int()
 people = DeferredReference(people_id, People.id)

 posted = DateTime()

and have fun

from twisted.internet.defer import inlineCallbacks, returnValue

from db import pool
from db.models import Topic

 def getTopics(self):
 @inlineCallbacks
 def transaction(store):
 dr = yield store.find(Topic, Topic.topic_title==self.topic, Topic.keyword==self.keyword)

 dr.order_by(Desc(Topic.posted))
 items = yield dr.all()

 for item in items:
 #do whatever.
 people = yield item.people
 #do whatever else.

 #this can recycle stores in pool
 yield store.commit()

 returnValue() #return whatever you want.

 return pool.transact(transaction)

Divmod Athena

Athena is a two-way communication channel for Nevow applications. Peruse the
examples. Or make this page better.

Nevow & Athena FAQ

History

Athena is the best-of-breed approach to developing interactive javascript (AJAX
/ Comet) applications with DivmodNevow. It should be noted that it supersedes
previous solutions, such as livepage. These prior solutions should not be used
with Athena development. Before using Athena, you may want to check out the
Getting started with Divmod Nevow.

Development Environment

If you haven’t developed with JavaScript before, you may wish to set up your
development environment before beginning with Athena. Some tips may be
available, depending on your preferred tools:

	nevow-athena-emacs

	Firebug [http://www.getfirebug.com/] - Firefox based javascript debugger

Simple LiveElement demo

Subclass nevow.athena.LiveElement and provide a docFactory which uses
the liveElement renderer:

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

Put the result onto a nevow.athena.LivePage somehow:

class MyPage(athena.LivePage):
 docFactory = loaders.stan(T.html[
 T.head(render=T.directive('liveglue')),
 T.body(render=T.directive('myElement'))])

 def render_myElement(self, ctx, data):
 f = MyElement()
 f.setFragmentParent(self)
 return ctx.tag[f]

 def child_(self, ctx):
 return MyPage()

Put the page into a nevow.appserver.NevowSite somehow:

from nevow import appserver
site = appserver.NevowSite(MyPage())

Hook the site up to the internet:

from twisted.application import service, internet

application = service.Application('Athena Demo')
webService = internet.TCPServer(8080, site)
webService.setServiceParent(application)

Put it all into a .tac file and run it:

twistd -noy myelement.tac

And hit http://localhost:8080/. You now have an extremely simple Athena page.

Customizing Behavior

Add a Twisted plugin which maps your module name onto your JavaScript source
file:

from nevow import athena

myPackage = athena.JSPackage({
 'MyModule': '/absolute/path/to/mymodule.js',
 })

Place this Python source file into nevow/plugins/ (the Twisted plugin
documentation [http://twistedmatrix.com/projects/core/documentation/howto/plugin.html]
describes where else you can put it, with the exception that Nevow plugins
should be placed beneath a nevow directory as opposed to a twisted
directory).

In the JavaScript source file (in this case, mymodule.js), import Nevow.Athena:

// import Nevow.Athena

Next, subclass the JavaScript Nevow.Athena.Widget class (notice the module
name that was defined in the plugin file):

MyModule.MyWidget = Nevow.Athena.Widget.subclass('MyModule.MyWidget');

Now, add a method to your newly defined class:

MyModule.MyWidget.methods(
 function echo(self, argument) {
 alert('Echoing ' + argument);
 return argument;
 });

Define the JavaScript class which will correspond to your LiveElement
subclass:

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 jsClass = u'MyModule.MyWidget'
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

Invoking Code in the Browser

Add some kind of event source (in this case, a timer, but this is incidental)
which will cause the server to call a method in the browser:

from twisted.internet import reactor

from nevow import athena, loaders, tags as T

class MyElement(athena.LiveElement):
 jsClass = u'MyModule.MyWidget'
 docFactory = loaders.stan(T.div(render=T.directive('liveElement')))

 def __init__(self, *a, **kw):
 super(MyElement, self).__init__(*a, **kw)
 reactor.callLater(5, self.myEvent)

 def myEvent(self):
 print 'My Event Firing'
 self.callRemote('echo', 12345)

Start up the server again and revisit <http://localhost:8080>.

Invoking Code on the Server

Add an event source (in this case, a user-interface element, but this is
incidental) which will cause the browser to call a method on the server:

class MyElement(athena.LiveElement):
 docFactory = loaders.stan(T.div(render=T.directive('liveElement'))[
 T.input(type='submit', value='Push me',
 onclick='Nevow.Athena.Widget.get(this).clicked()')])
 ...

Update the JavaScript definition of MyModule.MyWidget to handle this event
and actually call the server method:

MyModule.MyWidget.method(
 'clicked',
 function(self) {
 self.callRemote('echo', 'hello, world');
 });

Add a method to MyElement which the browser will call, and expose it to the
browser:

class MyElement(athena.LiveElement):
 ...

 def echo(self, argument):
 print 'Echoing', argument
 return argument
 athena.expose(echo)

Start up the server again and revisit <http://localhost:8080>.

Download the files for this tutorial:

	myelement.tac [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/myelement.tac?format=raw]

	mymodule.js [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/mymodule.js?format=raw]

	mymodule_pkg.py [http://divmod.org/trac/attachment/wiki/DivmodNevow/Athena/Files/mymodule_pkg.py?format=raw]

Testing

Visit the athena-testing or Test Driven Development with Athena [http://blackjml.livejournal.com/21602.html]

Implementation

Though Divmod’s use of it predates the term by several years, Athena uses what
some have come to call Comet. Athena’s JavaScript half makes an HTTP request
before it actually needs to retrieve information from the server. The server
does not respond to this request until it has something to tell the browser. In
this way, the server can push events to the browser instantly.

Tickets

See open tickets for Athena here [http://divmod.org/trac/query?status=new&status=assigned&status=reopened&component=Nevow&keywords=%7Eathena&order=priority].

Divmod PyFlakes

PyFlakes a Lint-like tool for Python, like PyChecker [http://pychecker.sourceforge.net] or PyLint [http://pypi.python.org/pypi/pylint]. It is
focused on identifying common errors quickly without executing Python code.

Its primary advantage over PyChecker is that it is fast. You don’t have to
sit around for minutes waiting for the checker to run; it runs on most large
projects in only a few seconds.

The two primary categories of defects reported by PyFlakes are:

	Names which are used but not defined or used before they are defined

	Names which are redefined without having been used

These can each take many forms. For example, PyFlakes will tell you when you
have forgotten an import, mistyped a variable name, defined two functions with
the same name, shadowed a variable from another scope, imported a module
twice, or two different modules with the same name, and so on.

Download

	0.5.0 Release [http://pypi.python.org/packages/source/p/pyflakes/pyflakes-0.5.0.tar.gz#md5=568dab27c42e5822787aa8a603898672]
(Release Notes [http://bazaar.launchpad.net/~divmod-dev/divmod.org/trunk/view/2681.1.2/Pyflakes/NEWS.txt])
or pip install pyflakes

	Trunk: bzr branch lp:divmod.org && cd divmod.org/PyFlakes
(Browse [http://bazaar.launchpad.net/~divmod-dev/divmod.org/trunk/view/head:/Pyflakes/])

Exits

	PyFlakes on PyPI [http://pypi.python.org/pypi/pyflakes]

	PyFlakes on Launchpad [https://launchpad.net/pyflakes]

	PyFlakes on SWiK [http://www.swik.net/pyflakes]

Divmod Sine

A voice over IP application server.

	Sine provides:

	
	SIP Registrar

	SIP Proxy

	Third party call control (3PCC)

	Voice-mail

	Through-the-web configuration

	[wiki:DivmodMantissa Divmod Mantissa] integration

Download

	Release: [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Sine-0.3.0.tar.gz?format=raw Download the latest release - 0.3.0!] (Requires [wiki:DivmodMantissa Mantissa]) ([source:/tags/releases/Sine-0.3.0/NEWS.txt Release Notes])

	Bleeding Edge: svn co http://divmod.org/svn/Divmod/trunk/Sine Sine

See also

	‘’Development’’ version of the [http://buildbot.divmod.org/apidocs/sine.html Sine API docs]

Divmod Vertex

Vertex is an implementation of the Q2Q protocol (sort of like P2P, but one
better). There are a few moving parts in Vertex:

	PTCP: a protocol which is nearly identical to TCP, but which runs over
UDP. This lets Q2Q penetrate most NAT configurations.

	JUICE ([JU]ice [I]s [C]oncurrent [E]vents): a very simple but immensely
flexible protocol which forms the basis of the high-level aspects of Q2Q

	vertex: a command line tool which exposes a few features useful in many
situations (such as registration and authentication)

Q2Q is a very high-level protocol (alternatively, transport) the goal of which
is to make communication over the internet a possibility (if you enjoy setting
up tunnels or firewall rules whenever you need to transfer a file between two
computers, Q2Q may not be for you). Q2Q endpoints aren’t hardware addresses or
network addresses. They look a lot like email addresses and they act a lot
like instant message addresses. You can hook into yours wherever you can
access the internet, and you can be online or offline as you choose (Q2Q
supports multiple unrelated protocols, so you also might be online for some
services but offline for others). Two people with Q2Q addresses can easily
communicate without out-of-band negotiation of their physical locations or the
topology of their networks. If Alice wants to talk to Bob, Alice will always
just open a connection to bob@divmod.com/chat. If Bob is online anywhere at
all, the connection will have an opportunity to succeed (Bob might be busy or
not want to talk to Alice, but that is another matter ;). The connection is
authenticated in both directions, so if it does succeed Alice knows she is
talking to the real Bob and vice versa.

The Q2Q network has some decentralized features (there is no one server or
company which can control all Q2Q addresses) and features of centralization
(addresses beneath a particular domain are issued by a server for that domain;
once issued, some activities require the server to be contacted again, while
others do not). Vertex includes an identity server capable of hosting Q2Q
addresses. Once you’ve installed the 0.1 release, you can run it like this:

exarkun@boson:~$ cat > q2q-standalone.tac
from vertex.q2qstandalone import defaultConfig
application = defaultConfig()
exarkun@boson:~$ twistd -noy q2q-standalone.tac
2005/10/15 00:12 EDT [-] Log opened.
2005/10/15 00:12 EDT [-] twistd 2.0.1 (/usr/bin/python2.4 2.4.1) starting up
2005/10/15 00:12 EDT [-] reactor class: twisted.internet.selectreactor.SelectReactor
2005/10/15 00:12 EDT [-] Loading q2q-standalone.tac...
2005/10/15 00:12 EDT [-] Loaded.
2005/10/15 00:12 EDT [-] vertex.q2q.Q2QService starting on 8788
2005/10/15 00:12 EDT [-] Starting factory <Q2QService 'service'@-488b6a34>
2005/10/15 00:12 EDT [-] vertex.ptcp.PTCP starting on 8788
2005/10/15 00:12 EDT [-] Starting protocol <vertex.ptcp.PTCP instance at 0xb777884c>
2005/10/15 00:12 EDT [-] Binding PTCP/UDP 8788=8788
2005/10/15 00:12 EDT [-] vertex.q2q.Q2QBootstrapFactory starting on 8789
2005/10/15 00:12 EDT [-] Starting factory <vertex.q2q.Q2QBootstrapFactory instance at 0xb77787cc>

You can acquire a new Q2Q address using the vertex command line tool:

exarkun@boson:~$ vertex register exarkun@boson password

boson is a name on my local network, making this address rather useless. On
the other hand, no one will be able to pretend to be me by cracking my
hopelessly weak password ;) If you set up a Vertex server on a public host,
you will be able to register a real, honest-to-goodness Q2Q address beneath
its domain (careful - so will anyone else).

vertex also offers a tool for requesting a signed certificate from the server.
These certificates can be used to prove ones identity to foreign domains
without involving ones home server. Another feature vertex provides is a toy
file transfer application. Bob can issue a vertex receive while Alice issues a
vertex send pointed at him, and the file will be transferred.

Much of the real power of Q2Q is exposed to developers using two methods:
listenQ2Q and connectQ2Q. These work in roughly the same way Twisted’s
listenTCP and connectTCP work: they offer support for writing servers and
clients that operate on the Q2Q network.

Exits

	[http://divmod.org/projects/vertex Old Divmod project page for Vertex]

	[http://www.swik.net/vertex Vertex on swik]

	[wiki:UsingVertex Using Vertex], a work-in-progress page about using Vertex in an application

	‘’Development’’ version of [http://buildbot.divmod.org/apidocs/vertex.html Vertex API docs]

Status

	Vertex does ‘’‘not’‘’ currently pass its test suite on Windows or Mac OS X.

	This [query:?group=status&component=Vertex&order=priority custom Vertex ticket query] will show you all the tickets (bugs and feature requests) filed against Vertex.

	Vertex is likely usable as a Q2Q server on Linux and Windows.

	Vertex is likely usable as a Q2Q client on Linux.

Download

	Release: [http://divmod.org/trac/attachment/wiki/SoftwareReleases/Vertex-0.3.0.tar.gz?format=raw Latest release: 0.3.0] ([source:/tags/releases/Vertex-0.3.0/NEWS.txt Release Notes])

	Trunk: svn co http://divmod.org/svn/Divmod/trunk/Vertex Vertex

Imaginary

Imaginary numbers are so named not because they are fictitious, but because
they are along a different axis from real numbers.

Divmod Imaginary is a simulationist’s take on the realm of role playing,
interactive fiction, and multiplayer dungeons. It incorporates gameplay
features from each area while attempting to provide a richer environment
than is generally available from existing systems.

Status: Imaginary is currently on the back of some peoples’ minds.

	Project Home Page [https://launchpad.net/imaginary]

	Browse the source [http://bazaar.launchpad.net/~divmod-dev/divmod.org/trunk/files/head:/Imaginary/]

	View the tickets [https://bugs.launchpad.net/imaginary]

See also instructions for starting an Imaginary server [http://bazaar.launchpad.net/~divmod-dev/divmod.org/trunk/files/head:/Imaginary/README.txt].

Lupy

The Lupy project has been RETIRED! For full-text indexing and search using
Python and Lucene we recommend [http://pylucene.osafoundation.org/ OSAF’s
PyLucene] instead.

Lupy is a is a full-text indexer and search engine written in Python. It is a
port of Jakarta Lucene 1.2 to Python. Specifically, it reads and writes
indexes in Lucene binary format. Like Lucene, it is sophisticated and
scalable. Lucene is a polished and mature project and you are encouraged to
read the documentation found at the Lucene home page.

Lupy requires Python 2.3 or greater.

Pyndex

The Pyndex project has been RETIRED! For full-text indexing and search we
recommend [wiki:DivmodXapwrap Divmod Xapwrap] or
[http://pylucene.osafoundation.org/ PyLucene] instead.

Pyndex is a simple and fast full-text indexer (aka search engine) implemented
in Python. It uses Metakit as its storage back-end. It works well for quickly
adding search to an application, and is also well suited to in-memory indexing
and search. It performs best in applications involving a few thousand
documents. Pyndex can handle AND, OR and phrase queries.

‘Old’ Quotient

Quotient’s name lives on but the original ATOP-based Quotient is now known as
Old Quotient. The latest version of [DivmodQuotient Quotient] is based on
[DivmodAxiom Axiom]: our ‘smart’ database.

The short version is: Quotient has been ported to Axiom and (the new)
Mantissa. We have been supporting and will continue to support our existing
customer base that uses ‘Old’ Quotient – never fear :-) We are also
investigating potential integration with our [http://blendix.com Blendix]
service, so stay tuned!

Divmod Xapwrap

This project is no longer supported. It is not compatible with the latest
release of Xapian.

Enhancements to the Python bindings for the [http://www.xapian.org Xapian]
full-text indexing library.

While Xapian comes with bindings, they are hard to work with, and being
SWIG’d, a literal translation of a C++ API. Xapwrap simplifies working with
Xapian databases in Python.

This is implemented as a second layer of wrapping, so Xapian’s bindings are
still required.

[http://divmod.org/trac/attachment/wiki/SoftwareReleases/Xapwrap-0.3.1.tar.gz?format=raw
Get release 0.3.1]

Potato Programming

One potato, two potato, three potato, four....

Potato programming is the sort of programming that encourages you to write
your own ‘for’ loops and build up / tear down data structures, rather than
passing vectors or iterators down through an interface in such a way that
would allow a smarter version of that interface to be more efficient.

In other words, this is the potato-programming way to add a file containing
lines of numbers:

f = file('test.numbers')
accum = 0.
for line in f:
 accum += float(line)
print accum

Contrast this with:

f = file('test.numbers')
print sum(map(float, f))

This term was coined by R0ml Lefkowitz.

See also: [PotatoProgrammingExplained Potato Programming Explained]

Glyph Lefkowitz

Although scientists agree he was a danger even before his days at
[http://origin.ea.com/ Origin Systems] working on the never-released sequel to
Ultima Online, popular concern about the threat posed by Glyph Lefkowitz began
when it became clear he was the author of the [http://www.twistedmatrix.com/
Twisted Framework]. Widespread panic has escalated since he began publishing
subversive thoughts through the channel known cryptically as
[http://www.livejournal.com/users/glyf/ ‘Handwriting on the Sky’].

Allegedly raised by a [http://r0ml.net/blog/ ‘computer programmer’], rumours
have circulated that he was completely removed from human society as a child,
and there is some speculation that
[http://yellow5.com/pokey/archive/index52.html he is not human himself].
Sources who have asked not to be named claim he is referred to by relatives as
an ‘alien mutant’.

Since he can make up any title he wants and write it here, Glyph is Divmod’s
Chief Architect. That means he is responsible for coordinating the technology
that glues the various parts of Divmod’s applications and infrastructure
together, such as [wiki:DivmodAxiom Axiom] and [wiki:DivmodMantissa Mantissa].

Jean-Paul

Medium-sized mammal of the family Hominidae in the order Primates, found
almost exclusively in the eastern portions of North America. Jean-Paul is
non-migratory, but at times can be found several hundred miles from his native
habitat. Jean-Paul’s diet consists primarily of nuts and berries and is
supplemented by any of a number of caffeine-rich foods, such as coffee beans
and mountain dew.

	,,Jean-Paul in his native habitat.,,	
	[[Image(http://divmod.org/users/exarkun/bearsalmon.jpg)]]	
	,,© Kim Heacox/Accent Alaska,,	

	[http://jcalderone.livejournal.com/ Writings by Jean-Paul]

	[http://twistedmatrix.com/projects/mail Other] [http://twistedmatrix.com/projects/names Projects] [http://twistedmatrix.com/projects/news by] [http://twistedmatrix.com/projects/words Jean-Paul]

Moe Aboulkheir

I write computer programs for Divmod, from a third-floor apartment in Cape
Town, South Africa. I like building things and seeing them come together; I
tend to gravitate towards the implementation of tangible, user-facing
features. Just about all of the interesting things about me don’t have a
place in a corporate personnel blurb, so I’ll instead say something about
enjoying reading books and listening to music. I don’t watch anime or read
web comics, although I do enjoy playing computer games, but don’t maintain a
blog.

Duncan McGreggor (oubiwann)

Brief Bio

Duncan started his hacking career at the ripe old age of 11 in the early 80s.
From his adventures in rewriting games on Kaypro’s luggable CP/M machine to
the world of open source, programming has been his passion. When Duncan wasn’t
programming, he: was an Army MI linguist; worked his way up to sous chef in a
fancy restaurant; studied quantum mechanics and mathematics as a physics
major; lived with Tibetan monks, learning meditation and esoteric philosophy;
and started his own software consulting company.

After several happy years of consulting, Duncan was lured into the Divmod fold
by the legendary reputations of its developers and the opportunity to work
with a team that has been coding on the cutting edge for over four years. In
addition to his work with Divmod, Duncan actively participates in many open
source projects and leads a few of his own.

At Divmod, Duncan is responsible for directing and managing operations such
that the architectural visions of Glyph and the developers meets the executive
goals of Amir and the Board of Directors.

Sites

	http://oubiwann.blogspot.com/

	http://blendix.com/users/oubiwann/

	http://schrobox.blogspot.com/

Projects

	Most everything is linked here:

	http://www.ohloh.net/accounts/9254

	Here are some direct links:

	
	http://pymon.sourceforge.net/

	http://code.google.com/p/twisted-jsonrpc/

	http://code.google.com/p/testgen4web-python/

	http://code.google.com/p/pyrtf-ng/

	http://code.google.com/p/coymon/

Wiki Notes

	[wiki:People/DuncanMcGreggor/MantissaPluginNotes Mantissa Plugin Notes]

	[wiki:People/DuncanMcGreggor/MantissaAxiomaticProject Mantissa’s ‘axiomatic project’ Subcommand Notes]

Draft Pages

	[wiki:Drafts/FrontPage Front Page]

	[wiki:Download]

	[wiki:DivmodCommunity]

Python

A pretty good programming language.

If you don’t know it, learn it.

http://www.python.org/

Q2Q

	Q2q is a protocol for:

	
	opening authenticated connections, even through NAT

	allowing a user to reliably demonstrate their identity (for distributed
authentication)

	receiving real-time data directly from other users

Q2Q provides a mechanism for a user to decide whether they want to expose
their IP address to a third party before accepting a peer-to-peer
connection.

It is byte-stream oriented and application-agnostic. Any peer-to-peer
application can use Q2Q to open connections and deliver messages.

Divmod Vertex is the Divmod implemention of Q2Q.

Exits

[http://swik.net/q2q Q2Q tag on swik]

SQLite

SQLite is an embedded relational database.

You can find a copy at http://sqlite.org/, and Python bindings at
http://pysqlite.org/ or http://www.rogerbinns.com/apsw.html.

Divmod Axiom currently uses SQLite exclusively as its backend.

The Divmod Fan Club

[[Image(http://divmod.org/tracdocs/fanclub_whtbck.png, right)]]

Do you use Divmod’s code?

Do you have a poster of Exarkun on your wall?

Do you love our giant-killing chutzpah?

Do you have a friend or family member on the Divmod team?

Has work you’ve done using a Divmod project made you fantastically wealthy, such
that you don’t know what to do with all your extra disposable income?

Now you know.

Joining Up

Join the club! [http://divmod.org:8080/signup]

We offer a few different levels of membership.

	Bronze Membership - $10 per month - Buy Glyph enough caffeine to get
through one average day.

	Silver Membership - $25 per month - Take JP out to a restaurant.

	Gold Membership - $50 per month - Pay for Allen’s cell phone calls to
Divmod HQ.

	Platinum Membership - $100 per month - Buy Moe’s groceries for a month.

	Diamond Membership - $250 per month - Buy an iPod for a tireless
contributor.

	fan-club-mithril - starting at $1000 per month (email to
sales@divmod.com) - Buy Amir a pony.

Huh What?!

Our developer community has approached us to express their appreciation of our work,
and to influence us to work on particular aspects of our product for the their benefit.

We’ve created the Divmod Fan Club, or the ‘DFC’, to give those users a way
to pay back, and a way for us to very publicly say ‘thank you!’.

It’s Awesome - Why should I sign up?

Conscience. Influence. Status.

Conscience

Simple: you give because you take.

Influence

The club has monthly meetings over IRC where Divmod will propose a group of
open-source features to be prioritized. Club members will be allowed to vote on
the order those features will be implemented in. We are currently tallying the
results of our first meeting - watch this space for our club-designated
priorities!

Members will be allowed a number of votes corresponding to the number of dollars
per month that their membership costs, except Mithril members, who receive a
maximum of 250 votes each, or can instead choose to apply their membership fees
directly to the expense of implementing features of their choice.

Status

Members of the club who sign up for one of our Divmod commercial services (such
as the soon-to-be-re-launched Divmod Mail [http://divmod.com]) will
occasionally get special treats, early access to new features, and extra goodies
not available to the general public.

Eventually they will also receive a ‘badge’ displayed next to their user-icon in
public areas.

Additionally, since we are currently using this club to beta-test our billing
system, members who sign up during the beta period (prior to the first day of
!PyCon) will receive an ‘arcanite alloy’ bonus, and be allowed 5 additional
votes for their membership level during the first 3 meetings. Members who are
currently subscribers to Divmod Mail [http://divmod.com] will additionally
receive this bonus indefinitely.

Where does the money go?

To pay employees, particularly for time spent on community work that is not
essential to Divmod’s core business.

To hire or buy gifts for some of our open source contributors.

To pay for hosting.

Once that’s done, we may send some of this money to open-source contributors to
our products whom we do not employ, and then, if we have hojillions of dollars
left over, start paying for development of features in software Divmod’s code
depends upon, such as SQLite and Python.

Index

 _static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to Divmod's documentation!

 		Divmod Axiom

 		Performance

 		Download

 		See Also

 		Index

 		Concurrency and Scalability

 		Axiom Tutorial

 		Why use Axiom?

 		Powerups

 		Reference

 		Examples : Shop

 		Transition mini-HOWTO

 		Glossary

 		So You Want To Change Your Schema

 		Dynamic Typing

 		Divmod Combinator

 		Rationale

 		Download

 		Use

 		chbranch

 		mkbranch

 		unbranch

 		Divmod Epsilon

 		Download

 		See Also

 		Divmod Mantissa

 		Download

 		Tutorials

 		See Also

 		Index

 		Mantissa is the Deployment Target

 		Divmod Nevow

 		Download

 		Features

 		Documentation

 		Examples

 		Help / Support

 		Related Projects

 		Index of Nevow documents

 		Getting started with Divmod Nevow

 		Nevow Tutorial: part 4

 		Form Handling (A summary of Nevow form handling techniques)

 		Error Handling

 		Formless

 		Authentication and Authorisation

 		Context Removal

 		Nevow Guard

 		Unit Testing

 		Putting Nevow Page under Apache Proxy

 		Reverse Proxy

 		Divmod Athena

 		Divmod Athena

 		Athena FAQ

 		Nevow & Athena FAQ

 		Demo: news edit

 		Demo: results

 		Tutorial: Using Storm with Nevow

 		A possible approach with Nevow and Storm/twisted-integration

 		Divmod Athena

 		History

 		Development Environment

 		Simple LiveElement demo

 		Customizing Behavior

 		Invoking Code in the Browser

 		Invoking Code on the Server

 		Download the files for this tutorial:

 		Testing

 		Implementation

 		Tickets

 		Divmod PyFlakes

 		Download

 		Exits

 		Divmod Sine

 		Download

 		See also

 		Divmod Vertex

 		Exits

 		Status

 		Download

 		Imaginary

 		Lupy

 		Pyndex

 		'Old' Quotient

 		Divmod Xapwrap

 		Potato Programming

 		Glyph Lefkowitz

 		Jean-Paul

 		Moe Aboulkheir

 		Duncan McGreggor (oubiwann)

 		Brief Bio

 		Sites

 		Projects

 		Wiki Notes

 		Draft Pages

 		Python

 		Q2Q

 		Exits

 		SQLite

 		The Divmod Fan Club

 		Joining Up

 		Huh What?!

 		It's Awesome - Why should I sign up?

 		Conscience

 		Influence

 		Status

 		Where does the money go?

_static/comment-close.png

_static/up.png

